Advertisements
Advertisements
Question
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solution
Here,
\[A = \begin{bmatrix}6 & - 12 & 25 \\ 4 & 15 & - 20 \\ 2 & 18 & 15\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}6 & - 12 & 25 \\ 4 & 15 & - 20 \\ 2 & 18 & 15\end{vmatrix}\]
\[ = 6\left( 225 + 360 \right) + 12\left( 60 + 40 \right) + 25(72 - 30)\]
\[ = 3510 + 1200 + 1050\]
\[ = 5760\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right]. \text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}15 & - 20 \\ 18 & 15\end{vmatrix} = 585, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}4 & - 20 \\ 2 & 15\end{vmatrix} = - 100 , C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}4 & 15 \\ 2 & 18\end{vmatrix} = 42\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 12 & 25 \\ 18 & 15\end{vmatrix} = 630, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}6 & 25 \\ 2 & 15\end{vmatrix} = 40, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}6 & - 12 \\ 2 & 18\end{vmatrix} = - 132\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 12 & 25 \\ 15 & - 20\end{vmatrix} = - 135, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}6 & 25 \\ 4 & - 20\end{vmatrix} = 220, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}6 & - 12 \\ 4 & 15\end{vmatrix} = 138\]
\[adj A = \begin{bmatrix}585 & - 100 & 42 \\ 630 & 40 & - 132 \\ - 135 & 220 & 138\end{bmatrix}^T \]
\[ = \begin{bmatrix}585 & 630 & - 135 \\ - 100 & 40 & 220 \\ 42 & - 132 & 138\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{5760}\begin{bmatrix}585 & 630 & - 135 \\ - 100 & 40 & 220 \\ 42 & - 132 & 138\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{5760}\begin{bmatrix}585 & 630 & - 135 \\ - 100 & 40 & 220 \\ 42 & - 132 & 138\end{bmatrix}\begin{bmatrix}4 \\ 3 \\ 10\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{5760}\begin{bmatrix}2340 + 1890 - 1350 \\ - 400 + 120 + 2200 \\ 168 - 396 + 1380\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{5760}\begin{bmatrix}2880 \\ 1920 \\ 1152\end{bmatrix}\]
\[ \Rightarrow x = \frac{2880}{5760}, y = \frac{1920}{5760}\text{ and }z = \frac{1152}{5760}\]
\[ \therefore x = \frac{1}{2}, y = \frac{1}{3}\text{ and }z = \frac{1}{5}\]
APPEARS IN
RELATED QUESTIONS
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]
\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]
Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
Solve the following determinant equation:
Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).
2x − y = 1
7x − 2y = −7
3x + ay = 4
2x + ay = 2, a ≠ 0
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
For what value of x, the following matrix is singular?
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
For what value of x is the matrix \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\] singular?
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.
The value of λ, such that the following system of equations has no solution, is
`2x - y - 2z = - 5`
`x - 2y + z = 2`
`x + y + lambdaz = 3`
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.