Advertisements
Advertisements
Question
There are two values of a which makes the determinant
Options
4
5
- 4
9
Solution
APPEARS IN
RELATED QUESTIONS
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.
Find the value of x, if
Without expanding, show that the value of the following determinant is zero:
Without expanding, show that the value of the following determinant is zero:
Without expanding, show that the value of the following determinant is zero:
Prove the following identities:
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
Find the value of
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
x − 2y = 4
−3x + 5y = −7
2x − y = 1
7x − 2y = −7
Prove that :
Prove that :
Prove that :
2x − y = 17
3x + 5y = 6
Given: x + 2y = 1
3x + y = 4
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
Write the value of the determinant
Evaluate:
If
If a, b, c are distinct, then the value of x satisfying
The value of
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is
For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
If
If A =
Using the matrix method, solve the following system of linear equations: