Advertisements
Advertisements
Question
Prove that :
Solution
\[\text{ Let LHS }= \Delta = \begin{vmatrix} x + 4 & x & x\\x & x + 4 & x\\x & x & x + 4 \end{vmatrix}\]
\[ = \begin{vmatrix} 3x + 4 & 3x + 4 & 3x + 4\\x & x + 4 & x\\x & x & x + 4 \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 + R_2 + R_3 \right] \]
\[ = \left( 3x + 4 \right)\begin{vmatrix} 1 & 1 & 1\\x & x + 4 & x \\x & x & x + 4 \end{vmatrix} \left[\text{ Taking out }\left( 3x + 4 \right)\text{ common from }R_1 \right]\]
\[ = \left( 3x + 4 \right)\begin{vmatrix} 1 & 0 & 0\\x & 4 & 0\\x & 0 & 4 \end{vmatrix} \left[\text{ Applying }C_2 \to C_2 - C_1\text{ and }C_3 \to C_3 - C_1 \right]\]
\[ = \left( 3x + 4 \right) \left( 4^2 \right) \left[\text{ Expanding along }R_1 \right]\]
\[ = 16\left( 3x + 4 \right) \]
\[ = RHS\]
APPEARS IN
RELATED QUESTIONS
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Solve system of linear equations, using matrix method.
2x – y = –2
3x + 4y = 3
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
Solve the following determinant equation:
Using determinants show that the following points are collinear:
(3, −2), (8, 8) and (5, 2)
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
x − 2y = 4
−3x + 5y = −7
3x + ay = 4
2x + ay = 2, a ≠ 0
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
If \[A = \left[ a_{ij} \right]\] is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
If \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}
If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]
If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\] is equal to
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
Find the inverse of the following matrix, using elementary transformations:
`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?