Advertisements
Advertisements
Question
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solution
Here,
\[A = \begin{bmatrix}1 & 1 & - 1 \\ 2 & 3 & 1 \\ 3 & - 1 & - 7\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}1 & 1 & - 1 \\ 2 & 3 & 1 \\ 3 & - 1 & - 7\end{vmatrix}\]
\[ = 1\left( - 21 + 1 \right) - 1\left( - 14 - 3 \right) - 1( - 2 - 9)\]
\[ = - 20 + 17 + 11\]
\[ = 8\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}3 & 1 \\ - 1 & - 7\end{vmatrix} = - 20 , C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & 1 \\ 3 & - 7\end{vmatrix} = 17, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & 3 \\ 3 & - 1\end{vmatrix} = - 11\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & - 1 \\ - 1 & - 7\end{vmatrix} = 8 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & - 1 \\ 3 & - 7\end{vmatrix} = - 4, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 1 \\ 3 & - 1\end{vmatrix} = 4\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & - 1 \\ 3 & 1\end{vmatrix} = 4 , C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & - 1 \\ 2 & 1\end{vmatrix} = - 3, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 1 \\ 2 & 3\end{vmatrix} = 1\]
\[adj A = \begin{bmatrix}- 20 & 17 & - 11 \\ 8 & - 4 & 4 \\ 4 & - 3 & 1\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 20 & 8 & 4 \\ 17 & - 4 & - 3 \\ - 11 & 4 & 1\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{8}\begin{bmatrix}- 20 & 8 & 4 \\ 17 & - 4 & - 3 \\ - 11 & 4 & 1\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{8}\begin{bmatrix}- 20 & 8 & 4 \\ 17 & - 4 & - 3 \\ - 11 & 4 & 1\end{bmatrix}\begin{bmatrix}3 \\ 10 \\ 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{8}\begin{bmatrix}- 60 + 80 + 4 \\ 51 - 40 - 3 \\ - 33 + 40 + 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{8}\begin{bmatrix}24 \\ 8 \\ 8\end{bmatrix}\]
\[ \Rightarrow x = \frac{24}{8}, y = \frac{8}{8}\text{ and }z = \frac{8}{8}\]
\[ \therefore x = 3, y = 1\text{ and }z = 1\]
APPEARS IN
RELATED QUESTIONS
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
Show that x = 2 is a root of the equation
Solve the following determinant equation:
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Using determinants, find the equation of the line joining the points
(1, 2) and (3, 6)
Using determinants, find the equation of the line joining the points
(3, 1) and (9, 3)
Prove that :
Prove that :
Prove that :
x+ y = 5
y + z = 3
x + z = 4
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
Solve the following system of equations by matrix method:
2x + 6y = 2
3x − z = −8
2x − y + z = −3
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
x + y = 1
x + z = − 6
x − y − 2z = 3
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x
`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.
If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?