Advertisements
Advertisements
Question
Show that x = 2 is a root of the equation
Solution
\[\text{ Let }∆ = \begin{vmatrix}x & - 6 & - 1 \\ 2 & - 3x & x - 3 \\ - 3 & 2x & x + 2\end{vmatrix}\]
\[ = \begin{vmatrix}x & - 6 & - 1 \\ 2 & - 3x & x - 3 \\ - 3 - x & 2x + 6 & x + 3\end{vmatrix} \left[\text{ Applying }R_3\text{ to }R_3 - R_1 \right]\]
\[ = \left( x + 3 \right)\begin{vmatrix}x & - 6 & - 1 \\ 2 & - 3x & x - 3 \\ - 1 & 2 & 1\end{vmatrix} \]
\[ = \left( x + 3 \right)\begin{vmatrix}x - 2 & 3x - 6 & - x + 2 \\ 2 & - 3x & x - 3 \\ - 1 & 2 & 1\end{vmatrix} \left[\text{ Applying } R_1 \text{ to }R_1 - R_2 \right]\]
\[ = \left( x + 3 \right)\left( x - 2 \right)\begin{vmatrix}1 & 3 & - 1 \\ 2 & - 3x & x - 3 \\ - 1 & 2 & 1\end{vmatrix} \]
\[ = \left( x + 3 \right)\left( x - 2 \right)\begin{vmatrix}1 & 3 & 0 \\ 2 & - 3x & x - 1 \\ - 1 & 2 & 0\end{vmatrix} \left[\text{ Applying }C_3 \text{ to }C_3 + C_1 \right]\]
\[ = \left( x + 3 \right)\left( x - 2 \right)\left( x - 1 \right)\begin{vmatrix}1 & 3 & 0 \\ 2 & - 3x & 1 \\ - 1 & 2 & 0\end{vmatrix} \]
\[ = \left( x + 3 \right)\left( x - 2 \right)\left( x - 1 \right)\left\{ - 1\begin{vmatrix}1 & 3 \\ - 1 & 2\end{vmatrix} \right\} \left[ \text{ Expanding along }C_3 \right]\]
\[ = - 5\left( x + 3 \right)\left( x - 2 \right)\left( x - 1 \right)\]
\[x = 2, - 3, 1\]
APPEARS IN
RELATED QUESTIONS
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]
Solve the following determinant equation:
If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
2x − y = 1
7x − 2y = −7
Prove that :
Prove that :
5x + 7y = − 2
4x + 6y = − 3
x+ y = 5
y + z = 3
x + z = 4
Write the value of
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , then x =
If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]
The value of the determinant
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.
The value of λ, such that the following system of equations has no solution, is
`2x - y - 2z = - 5`
`x - 2y + z = 2`
`x + y + lambdaz = 3`
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then
Choose the correct option:
If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is
Using the matrix method, solve the following system of linear equations:
`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.