Advertisements
Advertisements
Question
Find the value of x, if
Solution
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Evaluate
If A
Evaluate the following determinant:
Evaluate the following determinant:
Without expanding, show that the value of the following determinant is zero:
Without expanding, show that the value of the following determinant is zero:
Without expanding, show that the value of the following determinant is zero:
Without expanding, show that the value of the following determinant is zero:
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
Prove that :
Prove that :
Prove that :
3x + ay = 4
2x + ay = 2, a ≠ 0
9x + 5y = 10
3y − 2x = 8
x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.
Write the value of the determinant
If
If x ∈ N and
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
The value of the determinant
Let
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
Solve the following for x and y:
Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
Let P =