Advertisements
Advertisements
Question
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
Solution
Here,
\[5x + 3y + 7z = 4 . . . (1) \]
\[3x + 26y + 2z = 9 . . . (2)\]
\[7x + 2y + 10z = 5 . . . (3)\]
\[or , AX = B \]
where,
\[ A = \begin{bmatrix}5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix} \text{ and } B = \begin{bmatrix}4 \\ 9 \\ 5\end{bmatrix}\]
\[\begin{bmatrix}5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}4 \\ 9 \\ 5\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10\end{vmatrix}\]
\[ = 5\left( 260 - 4 \right) - 3\left( 30 - 14 \right) + 7(6 - 182)\]
\[ = 1280 - 48 - 1232\]
\[ = 0\]
So, A is singular . Thus, the given system of equations is either inconsistent or it is consistent with
\[\text{ infinitely many solutions because }\left( adj A \right)B \neq 0\text{ or }\left( adj A \right)B = 0 . \]
\[ {\text{ Let }C}_{ij} {\text{ be the co-factors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right]. \text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}26 & 2 \\ 2 & 10\end{vmatrix} = 256 , C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}3 & 2 \\ 7 & 10\end{vmatrix} = - 16, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}3 & 26 \\ 7 & 2\end{vmatrix} = - 176\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}3 & 7 \\ 2 & 10\end{vmatrix} = - 16 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}5 & 7 \\ 7 & 10\end{vmatrix} = 1, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}5 & 3 \\ 7 & 2\end{vmatrix} = 11\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}3 & 7 \\ 26 & 2\end{vmatrix} = - 176, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}5 & 7 \\ 3 & 2\end{vmatrix} = 11, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}5 & 3 \\ 3 & 26\end{vmatrix} = 121\]
\[adj A = \begin{bmatrix}256 & - 16 & - 176 \\ - 16 & 1 & 11 \\ - 176 & 11 & 121\end{bmatrix}^T \]
\[ = \begin{bmatrix}256 & - 16 & - 176 \\ - 16 & 1 & 11 \\ - 176 & 11 & 121\end{bmatrix}\]
\[\left( adj A \right)B = \begin{bmatrix}256 & - 16 & - 176 \\ - 16 & 1 & 11 \\ - 176 & 11 & 121\end{bmatrix}\begin{bmatrix}4 \\ 9 \\ 5\end{bmatrix}\]
\[ = \begin{bmatrix}1024 - 144 - 880 \\ - 64 + 9 + 55 \\ - 704 + 99 + 605\end{bmatrix}\]
\[ = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[\text{ if }\left| A \right|=0\text{ and }\left( adjA \right)B=0, \text{ then the system is consistent and has infinitely many solutions.}\]
\[\text{ Thus, }AX=B \text{ has infinitely many solutions.}\]
Substituting z=k in eq. (1) and eq. (2), we get
\[5x + 3y = 4 - 7k\text{ and }3x + 26y = 9 - 2k\]
\[\begin{bmatrix}5 & 3 \\ 3 & 26\end{bmatrix}\binom{x}{y} = \binom{4 - 7k}{9 - 2k}\]
Now,
\[\left| A \right| = \begin{vmatrix}5 & 3 \\ 3 & 26\end{vmatrix}\]
\[ = 130 - 9\]
\[ = 121 \neq 0\]
\[adj A = \begin{vmatrix}26 & - 3 \\ - 3 & 5\end{vmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{121}\begin{bmatrix}26 & - 3 \\ - 3 & 5\end{bmatrix}\]
\[ \therefore X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{121}\begin{bmatrix}26 & - 3 \\ - 3 & 5\end{bmatrix}\binom{4 - 7k}{9 - 2k}\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{121}\binom{104 - 182k - 27 + 6k}{ - 12 + 21k + 45 - 10k}\]
\[ \Rightarrow \binom{x}{y} = \binom{\frac{77 - 176k}{121}}{\frac{33 + 11k}{121}}\]
\[ \Rightarrow x = \frac{11\left( 7 - 16k \right)}{121}, y = \frac{11\left( 3 + k \right)}{121} and z = k\]
\[ \therefore x = \frac{7 - 16k}{11}, y = \frac{3 + k}{11}and z = k\]
These values of x, y and z also satisfy the third equation .
\[\text{ Thus, }x = \frac{7 - 16k}{11}, y = \frac{3 + k}{11}\text{ and }z = k \left( \text{where k is a real number } \right)\text{ satisfy the given system of equations .}\]
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
5x − y + 4z = 5
2x + 3y + 5z = 2
5x − 2y + 6z = −1
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]
Solve the following determinant equation:
If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
Prove that :
3x + y = 19
3x − y = 23
2x − y = − 2
3x + 4y = 3
2x + 3y = 10
x + 6y = 4
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
Write the value of the determinant
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
The value of the determinant
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
x + y = 1
x + z = − 6
x − y − 2z = 3
Solve the following by inversion method 2x + y = 5, 3x + 5y = −3
Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.
The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
Choose the correct option:
If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.