Advertisements
Advertisements
Question
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]
Solution
\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]
\[ = \begin{vmatrix}\sin^2 23^\circ & \sin^2 \left( 90 - 23 \right)^\circ & - 1 \\ - \sin^2 \left( 90 - 23 \right)^\circ & - \sin^2 23^\circ & 1 \\ - 1 & \sin^2 23^\circ & \sin^2 \left( 90 - 23 \right)^\circ\end{vmatrix}\]
\[ = \begin{vmatrix}\sin^2 23^\circ & \cos^2 23^\circ & - 1 \\ - \cos^2 23^\circ & - \sin^2 23^\circ & 1 \\ - 1 & \sin^2 23^\circ & \cos^2 23^\circ\end{vmatrix}\]
\[ = \begin{vmatrix}\sin^2 23^\circ + \cos^2 23^\circ & \cos^2 23^\circ & - 1 \\ - \cos^2 23^\circ - \sin^2 23^\circ & - \sin^2 23^\circ & 1 \\ - 1 + \sin^2 23^\circ & \sin^2 23^\circ & \cos^2 23^\circ\end{vmatrix} \left[ \text{ Applying }C_1 \to C_1 + C_2 \right]\]
\[ = \begin{vmatrix}1 & 1 & - 1 \\ - 1 & - \sin^2 23^\circ & 1 \\ - \cos^2 23^\circ & \sin^2 23^\circ & \cos^2 23^\circ\end{vmatrix}\]
\[ = \left( - 1 \right)\begin{vmatrix}- 1 & 1 & - 1 \\ 1 & - \sin^2 23^\circ & 1 \\ \cos^2 23^\circ & \sin^2 23^\circ & \cos^2 23^\circ\end{vmatrix}\]
\[ = 0\]
APPEARS IN
RELATED QUESTIONS
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Evaluate the following determinant:
\[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix}\]
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]
Find the area of the triangle with vertice at the point:
(−1, −8), (−2, −3) and (3, 2)
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Prove that :
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to
If \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.
A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if