Advertisements
Advertisements
Question
Prove that
Solution
\[\text{ Let LHS }= \Delta = \begin{vmatrix} a^2 + 1 & ab & ac\\ab & b^2 + 1 & bc\\ca & cb & c^2 + 1 \end{vmatrix}\]
\[ = \left( abc \right) \begin{vmatrix} a + \frac{1}{a} & b & c\\a & b + \frac{1}{b} & c\\a & b & c + \frac{1}{c} \end{vmatrix} \left[\text{ Taking out a, b and c common from }R_1 , R_2\text{ and }R_3 \right]\]
\[ = \left( abc \right) \begin{vmatrix} a + \frac{1}{a} & b & c\\ - \frac{1}{a} & \frac{1}{b} & 0 \\ - \frac{1}{a} & 0 & \frac{1}{c} \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1\text{ and }R_3 \to R_3 - R_1 \right]\]
\[ = \left( abc \right) \left( \frac{1}{abc} \right)\begin{vmatrix} a^2 + 1 & b^2 & c^2 \\ - 1 & 1 & 0 \\ - 1 & 0 & 1 \end{vmatrix} \left[\text{ Applying }C_1 \to a C_1 , C_2 \to b C_2\text{ and }C_3 \to c C_3 \right]\]
\[ = \begin{vmatrix} a^2 + 1 & b^2 & c^2 \\ - 1 & 1 & 0 \\ - 1 & 0 & 1 \end{vmatrix}\]
\[ = \left( - 1 \right) \begin{vmatrix} b^2 & c^2 \\ 1 & 0 \end{vmatrix} + \left( 1 \right) \begin{vmatrix} a^2 + 1 & b^2 \\ - 1 & 1 \end{vmatrix} \left[\text{ Expanding along }R_3 \right]\]
\[ = \left( - 1 \right) \left( - c^2 \right) + \left( a^2 + 1 + b^2 \right)\]
\[ = \left( a^2 + 1 + b^2 + c^2 \right)\]
\[ = \left( a^2 + b^2 + c^2 + 1 \right)\]
\[ = RHS\]
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
x + 3y = 5
2x + 6y = 8
Solve system of linear equations, using matrix method.
5x + 2y = 4
7x + 3y = 5
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
Evaluate the following determinant:
\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]
Show that
Solve the following determinant equation:
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
Prove that :
Prove that :
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
For what value of x, the following matrix is singular?
Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.