Advertisements
Advertisements
Question
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Solution
`[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
a-b=-1,2a+c=5,2a-b=0,3c+d=13
using a-b=-1 and 2a-b=0 we get a=1
APPEARS IN
RELATED QUESTIONS
Solve system of linear equations, using matrix method.
5x + 2y = 4
7x + 3y = 5
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.
Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Solve the following determinant equation:
Prove that :
Prove that :
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
Find the value of the determinant
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]
If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]
The value of the determinant
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4
A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + z = 7.
On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.