मराठी

If a = ⎡ ⎢ ⎣ 2 3 1 1 2 2 3 1 − 1 ⎤ ⎥ ⎦ , Find A–1 and Hence Solve the System of Equations 2x + Y – 3z = 13, 3x + 2y + Z = 4, X + 2y – Z = 8. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.

उत्तर

We have,
\[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ -3 & 1 & - 1\end{bmatrix}\]
\[\therefore \left| A \right| = \begin{vmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ - 3 & 1 & - 1\end{vmatrix}\]
\[ = 2\left( - 2 - 2 \right) - 3\left( - 1 + 6 \right) + 1\left( 1 + 6 \right)\]
\[ = - 8 - 15 + 7\]
\[ = - 16 \neq 0\]
So, A is invertible.
Let Cij be the co-factors of the elements aij in A[aij]. Then,
\[C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}2 & 2 \\ 1 & - 1\end{vmatrix} = - 2 - 2 = - 4\]
\[ C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}1 & 2 \\ - 3 & - 1\end{vmatrix} = - 1\left( - 1 + 6 \right) = - 5\]
\[ C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}1 & 2 \\ - 3 & 1\end{vmatrix} = 1 + 6 = 7\]
\[C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}3 & 1 \\ 1 & - 1\end{vmatrix} = 3 + 1 = 4\]
\[ C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & 1 \\ - 3 & - 1\end{vmatrix} = - 2 + 3 = 1\]
\[ C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & 3 \\ - 3 & 1\end{vmatrix} = - 1\left( 2 + 9 \right) = - 11\]
\[C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}3 & 1 \\ 2 & 2\end{vmatrix} = 6 - 2 = 4\]
\[ C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & 1 \\ 1 & 2\end{vmatrix} = - 1\left( 4 - 1 \right) = - 3\]
\[ C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & 3 \\ 1 & 2\end{vmatrix} = 4 - 3 = 1\]
\[\therefore Adj A = \begin{bmatrix}- 4 & - 5 & 7 \\ 4 & 1 & - 11 \\ 4 & - 3 & 1\end{bmatrix}^T = \begin{bmatrix}- 4 & 4 & 4 \\ - 5 & 1 & - 3 \\ 7 & - 11 & 1\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{Adj A}{\left| A \right|} = \frac{1}{- 16}\begin{bmatrix}- 4 & 4 & 4 \\ - 5 & 1 & - 3 \\ 7 & - 11 & 1\end{bmatrix}\]
Now, the given system of equations is expressible as
Or AX = B, where 

\[X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}, B = \begin{bmatrix}13 \\ 4 \\ 8\end{bmatrix}\]
Now,
\[\left| A^T \right| = \left| A \right| = - 16 \neq 0\]
So, the given system of equations is consistent with a unique solution given by
\[X = \left( A^T \right)^{- 1} B = \left( A^{- 1} \right)^T B\]
\[\begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{16} \begin{bmatrix}- 4 & 4 & 4 \\ - 5 & 1 & - 3 \\ 7 & - 11 & 1\end{bmatrix}^T \begin{bmatrix}13 \\ 4 \\ 8\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{16}\begin{bmatrix}- 4 & - 5 & 7 \\ 4 & 1 & - 11 \\ 4 & - 3 & 1\end{bmatrix}\begin{bmatrix}13 \\ 4 \\ 8\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{16}\begin{bmatrix}- 52 - 20 + 56 \\ 52 + 4 - 88 \\ 52 - 12 + 8\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{16}\begin{bmatrix}- 16 \\ - 32 \\ 48\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 2 \\ - 3\end{bmatrix}\]
Hence, x = 1, = 2 and = −3 is the required solution.
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 8.6 | पृष्ठ १६

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

x + 3y = 5

2x + 6y = 8


Solve system of linear equations, using matrix method.

4x – 3y = 3

3x – 5y = 7


Solve system of linear equations, using matrix method.

2x + y + z = 1

x – 2y – z =` 3/2`

3y – 5z = 9


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


Show that

\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]


Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]


Evaluate the following determinant:

\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]


\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]


Prove the following identity:

\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]


\[If \begin{vmatrix}p & b & c \\ a & q & c \\ a & b & r\end{vmatrix} = 0,\text{ find the value of }\frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c}, p \neq a, q \neq b, r \neq c .\]

 


Show that x = 2 is a root of the equation

\[\begin{vmatrix}x & - 6 & - 1 \\ 2 & - 3x & x - 3 \\ - 3 & 2x & x + 2\end{vmatrix} = 0\]  and solve it completely.
 

 


​Solve the following determinant equation:

\[\begin{vmatrix}3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8\end{vmatrix} = 0\]

 


Using determinants show that the following points are collinear:

(3, −2), (8, 8) and (5, 2)


Prove that

\[\begin{vmatrix}a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2\end{vmatrix} = \left( a^3 + b^3 \right)^2\]

3x + ay = 4
2x + ay = 2, a ≠ 0


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2


If A is a singular matrix, then write the value of |A|.

 

The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\]  lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]


Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]




Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations   x − 2y = 10, 2x − y − z = 8, −2y + z = 7


The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.

 

If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

Let a, b, c be positive real numbers. The following system of equations in x, y and z 

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, - \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text { has }\]
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions

If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + = 7.


Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices


If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x


Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.


If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.


If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.


Choose the correct option:

If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is


If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to


If the following equations

x + y – 3 = 0 

(1 + λ)x + (2 + λ)y – 8 = 0

x – (1 + λ)y + (2 + λ) = 0

are consistent then the value of λ can be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×