Advertisements
Advertisements
प्रश्न
The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\] lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]
पर्याय
1
2
3
0
उत्तर
\[\text{ Let }∆ = \begin{vmatrix} cosec x & \sec x & \sec x\\\sec x & cosec x & \sec x\\\sec x & \sec x & cosec x \end{vmatrix}\]
\[ = \left( cosec x \right)^3 \begin{vmatrix} 1 &\frac{\sec x}{cosec x} & \frac{\sec x}{cosec x}\\\frac{\sec x}{cosec x} & 1 & \frac{\sec x}{cosec x}\\\frac{\sec x}{cosec x} &\frac{\sec x}{cosec x} & 1 \end{vmatrix}\]
\[ = \left( cosec x \right)^3 \begin{vmatrix} 1 & \tan x & \tan x \\\tan x & 1 & \tan x\\\tan x & \tan x & 1 \end{vmatrix}\]
\[ = \left( cosec x \right)^3 \begin{vmatrix} 1 - \tan x & \tan x - 1 & 0 \\ 0 & 1 - \tan x & \tan x - 1\\\tan x & \tan x & 1 \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2 , R_2 \to R_2 - R_3 \right]\]
\[ = \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \begin{vmatrix} 1 & - 1 & 0 \\ 0 & 1 & - 1\\\tan x & \tan x & 1 \end{vmatrix} \left[\text{ Taking out }\left( 1 - \tan x \right)\text{ common from }R_1\text{ and }R_2 \right]\]
\[ = \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \left\{ 1\begin{vmatrix}1 & - 1 \\ \tan x & 1\end{vmatrix} + \tan x\begin{vmatrix}- 1 & 0 \\ 1 & - 1\end{vmatrix} \right\} \left[ \text{ Expanding along }C_1 \right]\]
\[ = \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \left\{ 1 + \tan x + \tan x \right\}\]
\[ = \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \left\{ 1 + 2 \tan x \right\}\]
\[ ∆ = 0\]
\[ \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \left( 1 + 2 \tan x \right) = 0\]
\[ \Rightarrow \left( 1 - \tan x \right) = 0, \left( cosec x \right)^3 = 0\text{ and }\left( 1 + 2 \tan x \right) = 0\]
or
\[\tan x = 1, cosec x = 0\text{ and }\tan x = \frac{- 1}{2}\]
\[ \Rightarrow - \frac{\pi}{4} \leq x \leq \frac{\pi}{4} \left[ \tan x = 1, \tan x = \frac{- 1}{2}\text{ are 2 real roots as cosec x = 0 has no solution }\right]\]
Thus, there are 2 solutions .
APPEARS IN
संबंधित प्रश्न
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
Find the value of x, if
\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
Prove that:
`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`
Solve the following determinant equation:
If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]
If \[a, b\] and c are all non-zero and
Using determinants show that the following points are collinear:
(3, −2), (8, 8) and (5, 2)
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
Prove that :
Prove that :
Prove that
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
For what value of x is the matrix \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\] singular?
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.
Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award ₹x each, ₹y each and ₹z each the three respectively values to its 3, 2 and 1 students with a total award money of ₹1,000. School Q wants to spend ₹1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.
Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to
The value of λ, such that the following system of equations has no solution, is
`2x - y - 2z = - 5`
`x - 2y + z = 2`
`x + y + lambdaz = 3`
If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.