मराठी

If A = [2-3532-411-2] find A−1. Using A−1 solve the system of equations 2x – 3y + 5z = 113x + 2y – 4z = – 5x + y – 2z = – 3 - Mathematics

Advertisements
Advertisements

प्रश्न

If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations

2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3

बेरीज

उत्तर

`abs A = abs ((2,-3,5),(3,2,-4),(1,1,-2))`

`= 2 [2 xx (-2) - 1 xx (-4)] - (-3) [3 xx (-2) - (1) xx (- 4)] + 5 [ 3 xx 1 - 1 xx 2]`

`= 2 [-4 + 4] + 3 [-6 + 4] + 5 [3 - 2]`

`= 0 + 3 xx (-2) + 5 xx 1`

`= -6 + 5 = -1 ne 0`

`therefore A^-1` can be known,

Cofactors of the elements of `abs A`

`A_11 = abs ((2,-4),(1,-2)) = -4 + 4 = 0`

`A_12 = - abs ((3,-4),(1,-2)) = - (-6 + 4) = 2`

`A_13 = abs ((3,2),(1,1)) = 3 - 2 = 1`

`A_21 = - abs ((-3,5),(1,-2)) = - (6 - 5) = -1`

`A_22 = abs ((2,5),(1,-2)) = -4 - 5 = -9`

`A_23 = - abs ((2,-3),(1,1)) = - (2 + 3) = - 5`

`A_31 = abs ((-3,5),(2,-4)) = 12 - 10 = 2`

`A_32 = - abs ((2,5),(3,-4)) = - (-8 - 15) = 23`

`A_33 = abs ((2,-3),(3,2)) = 4 + 9 = 13`

The cofactor matrix of the elements of `therefore abs A` is C = `[(0,2,1),(-1,-9,-5),(2,23,13)]`

`therefore adj A = [(0,2,1),(-1,-9,-5),(2,23,13)] [(0,-1,2),(2,-9,23),(1,-5,13)]`

`therefore A^-1 = adj A/abs A`

`= - [(0,-1,2),(2,-9,23),(1,-5,13)] = [(0,1,-2),(-2,9,-23),(-1,5,-13)]`

Writing the given equation in the form AX = B,

Or `A = [(2,-3,5),(3,2,-4),(1,1,-2)], X = [(x),(y),(z)], B = [(11),(-5),(-3)]`

`therefore X = A^-1 B` 

 `[(x),(y),(z)] = [(0,1,-2),(-2,9,-23),(-1,5,-13)] [(11),(-5),(-3)] = [(0 - 5 + 6),(-22 - 45 + 69),(-11 - 25 + 39)] = [(1),(2),(3)]`

`=> x = 1,  y = 2, z = 3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants - Exercise 4.6 [पृष्ठ १३७]

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

x + y + z = 1

2x + 3y + 2z = 2

ax + ay + 2az = 4


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]


If \[a, b\] and c  are all non-zero and 

\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c\end{vmatrix} =\] 0, then prove that 
\[\frac{1}{a} + \frac{1}{b} + \frac{1}{c} +\]1
= 0

 


Find the area of the triangle with vertice at the point:

(3, 8), (−4, 2) and (5, −1)


Using determinants show that the following points are collinear:

(5, 5), (−5, 1) and (10, 7)


Using determinants show that the following points are collinear:

(1, −1), (2, 1) and (4, 5)


Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).


If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.


Prove that :

\[\begin{vmatrix}1 & 1 + p & 1 + p + q \\ 2 & 3 + 2p & 4 + 3p + 2q \\ 3 & 6 + 3p & 10 + 6p + 3q\end{vmatrix} = 1\]

 


5x + 7y = − 2
4x + 6y = − 3


A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission 

Month Sale of units Total commission
drawn (in Rs)
  A B C  
Jan 90 100 20 800
Feb 130 50 40 900
March 60 100 30 850


Find out the rates of commission on items A, B and C by using determinant method.


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.

 

Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.


If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]


If \[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\], then write the value of x.

If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.


If xyare different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is





The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is 



Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1


Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13


The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.


Let a, b, c be positive real numbers. The following system of equations in x, y and z 

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, - \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text { has }\]
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions

Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`


System of equations x + y = 2, 2x + 2y = 3 has ______


Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices


`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`


The value of λ, such that the following system of equations has no solution, is

`2x - y - 2z = - 5`

`x - 2y + z = 2`

`x + y + lambdaz = 3`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×