Advertisements
Advertisements
प्रश्न
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
उत्तर
`abs A = abs ((2,-3,5),(3,2,-4),(1,1,-2))`
`= 2 [2 xx (-2) - 1 xx (-4)] - (-3) [3 xx (-2) - (1) xx (- 4)] + 5 [ 3 xx 1 - 1 xx 2]`
`= 2 [-4 + 4] + 3 [-6 + 4] + 5 [3 - 2]`
`= 0 + 3 xx (-2) + 5 xx 1`
`= -6 + 5 = -1 ne 0`
`therefore A^-1` can be known,
Cofactors of the elements of `abs A`
`A_11 = abs ((2,-4),(1,-2)) = -4 + 4 = 0`
`A_12 = - abs ((3,-4),(1,-2)) = - (-6 + 4) = 2`
`A_13 = abs ((3,2),(1,1)) = 3 - 2 = 1`
`A_21 = - abs ((-3,5),(1,-2)) = - (6 - 5) = -1`
`A_22 = abs ((2,5),(1,-2)) = -4 - 5 = -9`
`A_23 = - abs ((2,-3),(1,1)) = - (2 + 3) = - 5`
`A_31 = abs ((-3,5),(2,-4)) = 12 - 10 = 2`
`A_32 = - abs ((2,5),(3,-4)) = - (-8 - 15) = 23`
`A_33 = abs ((2,-3),(3,2)) = 4 + 9 = 13`
The cofactor matrix of the elements of `therefore abs A` is C = `[(0,2,1),(-1,-9,-5),(2,23,13)]`
`therefore adj A = [(0,2,1),(-1,-9,-5),(2,23,13)] [(0,-1,2),(2,-9,23),(1,-5,13)]`
`therefore A^-1 = adj A/abs A`
`= - [(0,-1,2),(2,-9,23),(1,-5,13)] = [(0,1,-2),(-2,9,-23),(-1,5,-13)]`
Writing the given equation in the form AX = B,
Or `A = [(2,-3,5),(3,2,-4),(1,1,-2)], X = [(x),(y),(z)], B = [(11),(-5),(-3)]`
`therefore X = A^-1 B`
`[(x),(y),(z)] = [(0,1,-2),(-2,9,-23),(-1,5,-13)] [(11),(-5),(-3)] = [(0 - 5 + 6),(-22 - 45 + 69),(-11 - 25 + 39)] = [(1),(2),(3)]`
`=> x = 1, y = 2, z = 3`
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
If \[a, b\] and c are all non-zero and
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Prove that :
5x + 7y = − 2
4x + 6y = − 3
A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission
Month | Sale of units | Total commission drawn (in Rs) |
||
A | B | C | ||
Jan | 90 | 100 | 20 | 800 |
Feb | 130 | 50 | 40 | 900 |
March | 60 | 100 | 30 | 850 |
Find out the rates of commission on items A, B and C by using determinant method.
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
System of equations x + y = 2, 2x + 2y = 3 has ______
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`
The value of λ, such that the following system of equations has no solution, is
`2x - y - 2z = - 5`
`x - 2y + z = 2`
`x + y + lambdaz = 3`