मराठी

Let X = ⎡ ⎢ ⎣ X 1 X 2 X 3 ⎤ ⎥ ⎦ , a = ⎡ ⎢ ⎣ 1 − 1 2 2 0 1 3 2 1 ⎤ ⎥ ⎦ and B = ⎡ ⎢ ⎣ 3 1 4 ⎤ ⎥ ⎦ . If Ax = B, Then X is Equal to (A) ⎡ ⎢ ⎣ - Mathematics

Advertisements
Advertisements

प्रश्न

Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to

 

पर्याय

  • \[\begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\]

  • \[\begin{bmatrix}- 1 \\ - 2 \\ - 3\end{bmatrix}\]

  • \[\begin{bmatrix}- 1 \\ - 2 \\ - 3\end{bmatrix}\]

  • \[\begin{bmatrix}- 1 \\ 2 \\ 3\end{bmatrix}\]

  • \[\begin{bmatrix}0 \\ 2 \\ 1\end{bmatrix}\] 

MCQ

उत्तर

(a) \[\begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\]

Here,
\[ A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}, X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix} \left(\text{ Given }\right)\]
\[\left| A \right|=1 \left( 0 - 2 \right) + 1\left( 2 - 3 \right) + 2\left( 4 - 0 \right)\]
\[ = - 2 - 1 + 8\]
\[ = 5\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}0 & 1 \\ 2 & 1\end{vmatrix} = - 2, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & 1 \\ 3 & 1\end{vmatrix} = 1, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & 0 \\ 3 & 2\end{vmatrix} = 4\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 1 & 2 \\ 2 & 1\end{vmatrix} = 5, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 2 \\ 3 & 1\end{vmatrix} = - 5, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & - 1 \\ 3 & 2\end{vmatrix} = - 5\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 1 & 2 \\ 0 & 1\end{vmatrix} = - 1, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 2 \\ 2 & 1\end{vmatrix} = 3, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & - 1 \\ 2 & 0\end{vmatrix} = 2\]
\[adj A = \begin{bmatrix}- 2 & 1 & 4 \\ 5 & - 5 & - 5 \\ - 1 & 3 & 2\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 2 & 5 & - 1 \\ 1 & - 5 & 3 \\ 4 & - 5 & 2\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{5}\begin{bmatrix}- 2 & 5 & - 1 \\ 1 & - 5 & 3 \\ 4 & - 5 & 2\end{bmatrix}\]
\[ \therefore X = A^{- 1} B\]
\[ \Rightarrow X = \frac{1}{5}\begin{bmatrix}- 2 & 5 & - 1 \\ 1 & - 5 & 3 \\ 4 & - 5 & 2\end{bmatrix}\begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{5}\begin{bmatrix}- 6 + 5 - 4 \\ 3 - 5 + 12 \\ 12 - 5 + 8\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} = \frac{1}{5}\begin{bmatrix}- 5 \\ 10 \\ 15\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} = \begin{bmatrix}- 1 \\ 2 \\ 3\end{bmatrix}\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.4 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.4 | Q 3 | पृष्ठ २२

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

x + 3y = 5

2x + 6y = 8


Solve the system of linear equations using the matrix method.

2x + 3y + 3z = 5

x − 2y + z = −4

3x − y − 2z = 3


The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Find the value of x, if

\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]


Prove that:

`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & b & c \\ a & x + b & c \\ a & b & x + c\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & x & x \\ x & x + a & x \\ x & x & x + a\end{vmatrix} = 0, a \neq 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^2 \\ 1 & a & a^2 \\ 1 & b & b^2\end{vmatrix} = 0, a \neq b\]

 


Using determinants show that the following points are collinear:

(3, −2), (8, 8) and (5, 2)


Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).


Prove that :

\[\begin{vmatrix}x + 4 & x & x \\ x & x + 4 & x \\ x & x & x + 4\end{vmatrix} = 16 \left( 3x + 4 \right)\]

3x + ay = 4
2x + ay = 2, a ≠ 0


x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0


x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1


x + 2y = 5
3x + 6y = 15


Write the value of 

\[\begin{vmatrix}\sin 20^\circ & - \cos 20^\circ\\ \sin 70^\circ& \cos 70^\circ\end{vmatrix}\]

If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]


Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15


Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13


The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.


The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.

 

x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is


Find the inverse of the following matrix, using elementary transformations: 

`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`


System of equations x + y = 2, 2x + 2y = 3 has ______


The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices


What is the nature of the given system of equations

`{:(x + 2y = 2),(2x + 3y = 3):}`


If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.


If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×