Advertisements
Advertisements
प्रश्न
Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to
विकल्प
\[\begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\]
\[\begin{bmatrix}- 1 \\ - 2 \\ - 3\end{bmatrix}\]
\[\begin{bmatrix}- 1 \\ - 2 \\ - 3\end{bmatrix}\]
\[\begin{bmatrix}- 1 \\ 2 \\ 3\end{bmatrix}\]
\[\begin{bmatrix}0 \\ 2 \\ 1\end{bmatrix}\]
उत्तर
(a) \[\begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\]
Here,
\[ A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}, X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix} \left(\text{ Given }\right)\]
\[\left| A \right|=1 \left( 0 - 2 \right) + 1\left( 2 - 3 \right) + 2\left( 4 - 0 \right)\]
\[ = - 2 - 1 + 8\]
\[ = 5\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}0 & 1 \\ 2 & 1\end{vmatrix} = - 2, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & 1 \\ 3 & 1\end{vmatrix} = 1, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & 0 \\ 3 & 2\end{vmatrix} = 4\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 1 & 2 \\ 2 & 1\end{vmatrix} = 5, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 2 \\ 3 & 1\end{vmatrix} = - 5, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & - 1 \\ 3 & 2\end{vmatrix} = - 5\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 1 & 2 \\ 0 & 1\end{vmatrix} = - 1, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 2 \\ 2 & 1\end{vmatrix} = 3, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & - 1 \\ 2 & 0\end{vmatrix} = 2\]
\[adj A = \begin{bmatrix}- 2 & 1 & 4 \\ 5 & - 5 & - 5 \\ - 1 & 3 & 2\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 2 & 5 & - 1 \\ 1 & - 5 & 3 \\ 4 & - 5 & 2\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{5}\begin{bmatrix}- 2 & 5 & - 1 \\ 1 & - 5 & 3 \\ 4 & - 5 & 2\end{bmatrix}\]
\[ \therefore X = A^{- 1} B\]
\[ \Rightarrow X = \frac{1}{5}\begin{bmatrix}- 2 & 5 & - 1 \\ 1 & - 5 & 3 \\ 4 & - 5 & 2\end{bmatrix}\begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{5}\begin{bmatrix}- 6 + 5 - 4 \\ 3 - 5 + 12 \\ 12 - 5 + 8\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} = \frac{1}{5}\begin{bmatrix}- 5 \\ 10 \\ 15\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} = \begin{bmatrix}- 1 \\ 2 \\ 3\end{bmatrix}\]
\[\]
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
Prove that:
`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]
Solve the following determinant equation:
Solve the following determinant equation:
Solve the following determinant equation:
If \[a, b\] and c are all non-zero and
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
Using determinants, find the equation of the line joining the points
(3, 1) and (9, 3)
Prove that :
Prove that :
Prove that :
Prove that
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
3x + y = 5
− 6x − 2y = 9
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
Write the value of the determinant
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solve the following system of equations by matrix method:
3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
Solve the following system of equations by matrix method:
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`
Choose the correct option:
If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is
Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.