हिंदी

Let X = ⎡ ⎢ ⎣ X 1 X 2 X 3 ⎤ ⎥ ⎦ , a = ⎡ ⎢ ⎣ 1 − 1 2 2 0 1 3 2 1 ⎤ ⎥ ⎦ and B = ⎡ ⎢ ⎣ 3 1 4 ⎤ ⎥ ⎦ . If Ax = B, Then X is Equal to (A) ⎡ ⎢ ⎣ - Mathematics

Advertisements
Advertisements

प्रश्न

Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to

 

विकल्प

  • \[\begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\]

  • \[\begin{bmatrix}- 1 \\ - 2 \\ - 3\end{bmatrix}\]

  • \[\begin{bmatrix}- 1 \\ - 2 \\ - 3\end{bmatrix}\]

  • \[\begin{bmatrix}- 1 \\ 2 \\ 3\end{bmatrix}\]

  • \[\begin{bmatrix}0 \\ 2 \\ 1\end{bmatrix}\] 

MCQ

उत्तर

(a) \[\begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\]

Here,
\[ A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}, X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix} \left(\text{ Given }\right)\]
\[\left| A \right|=1 \left( 0 - 2 \right) + 1\left( 2 - 3 \right) + 2\left( 4 - 0 \right)\]
\[ = - 2 - 1 + 8\]
\[ = 5\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}0 & 1 \\ 2 & 1\end{vmatrix} = - 2, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & 1 \\ 3 & 1\end{vmatrix} = 1, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & 0 \\ 3 & 2\end{vmatrix} = 4\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 1 & 2 \\ 2 & 1\end{vmatrix} = 5, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 2 \\ 3 & 1\end{vmatrix} = - 5, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & - 1 \\ 3 & 2\end{vmatrix} = - 5\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 1 & 2 \\ 0 & 1\end{vmatrix} = - 1, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 2 \\ 2 & 1\end{vmatrix} = 3, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & - 1 \\ 2 & 0\end{vmatrix} = 2\]
\[adj A = \begin{bmatrix}- 2 & 1 & 4 \\ 5 & - 5 & - 5 \\ - 1 & 3 & 2\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 2 & 5 & - 1 \\ 1 & - 5 & 3 \\ 4 & - 5 & 2\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{5}\begin{bmatrix}- 2 & 5 & - 1 \\ 1 & - 5 & 3 \\ 4 & - 5 & 2\end{bmatrix}\]
\[ \therefore X = A^{- 1} B\]
\[ \Rightarrow X = \frac{1}{5}\begin{bmatrix}- 2 & 5 & - 1 \\ 1 & - 5 & 3 \\ 4 & - 5 & 2\end{bmatrix}\begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{5}\begin{bmatrix}- 6 + 5 - 4 \\ 3 - 5 + 12 \\ 12 - 5 + 8\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} = \frac{1}{5}\begin{bmatrix}- 5 \\ 10 \\ 15\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} = \begin{bmatrix}- 1 \\ 2 \\ 3\end{bmatrix}\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Solution of Simultaneous Linear Equations - Exercise 8.4 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 8 Solution of Simultaneous Linear Equations
Exercise 8.4 | Q 3 | पृष्ठ २२

संबंधित प्रश्न

Examine the consistency of the system of equations.

x + 2y = 2

2x + 3y = 3


Solve system of linear equations, using matrix method.

2x + y + z = 1

x – 2y – z =` 3/2`

3y – 5z = 9


Solve the system of linear equations using the matrix method.

x − y + z = 4

2x + y − 3z = 0

x + y + z = 2


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]


Prove that:

`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`


Prove that

\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]


Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]


​Solve the following determinant equation:

\[\begin{vmatrix}3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}3 & - 2 & \sin\left( 3\theta \right) \\ - 7 & 8 & \cos\left( 2\theta \right) \\ - 11 & 14 & 2\end{vmatrix} = 0\]

 


Show that
`|(x-3,x-4,x-alpha),(x-2,x-3,x-beta),(x-1,x-2,x-gamma)|=0`, where α, β, γ are in A.P.

 


If \[a, b\] and c  are all non-zero and 

\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c\end{vmatrix} =\] 0, then prove that 
\[\frac{1}{a} + \frac{1}{b} + \frac{1}{c} +\]1
= 0

 


Find the area of the triangle with vertice at the point:

(2, 7), (1, 1) and (10, 8)


Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.


Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


Prove that :

\[\begin{vmatrix}b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c\end{vmatrix} = 3abc - a^3 - b - c^3\]

 


Prove that :

\[\begin{vmatrix}1 & a^2 + bc & a^3 \\ 1 & b^2 + ca & b^3 \\ 1 & c^2 + ab & c^3\end{vmatrix} = - \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a^2 + b^2 + c^2 \right)\]

 


Prove that :

\[\begin{vmatrix}a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2\end{vmatrix} = 4 a^2 b^2 c^2\]

Prove that

\[\begin{vmatrix}a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2\end{vmatrix} = \left( a^3 + b^3 \right)^2\]

6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8


5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


3x + y = 5
− 6x − 2y = 9


x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1


2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2


Write the value of the determinant 

\[\begin{vmatrix}a & 1 & b + c \\ b & 1 & c + a \\ c & 1 & a + b\end{vmatrix} .\]

 


If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]


Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]


Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


Solve the following system of equations by matrix method:

\[\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0\]

 


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.


The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.


What is the nature of the given system of equations

`{:(x + 2y = 2),(2x + 3y = 3):}`


Choose the correct option:

If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is


Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.


If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×