Advertisements
Advertisements
प्रश्न
Solve the following system of equations by matrix method:
3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
उत्तर
The given system can be written in matrix form as:
`[(3, 4, 7),(2, -1, 3),(1, 2, -3)][(x),(y),(z)] = [(14),(4),(0)]` or A X = B
A = `[(3, 4, 7),(2, -1, 3),(1, 2, -3)], X = [(x),(y),(z)] and B = [(14),(4),(0)]`
Now,
|A| = `3|(-1, 3),(2, -3)| -4|(2, 3),(1, -3)| + 7|(2, 3),(2, -3)|`
= 3(3 − 6) − 4(−6 − 3) + 7(4 + 1)
= −9 + 36 + 35
= 62
So, the above system has a unique solution, given by
X = A−1 B
Cofactors of A are:
C11 = (−1)1 + 1 3 − 6 = −3
C21 = (−1)2 + 1 − 12 − 14 = 26
C31 = (−1)3 + 1 12 + 7 = 19
C12 = (−1)1 + 2 − 6 − 3 = 9
C22 = (−1)2 + 1 − 3 − 7 = −10
C32 = (−1)3 + 1 9 − 14 = 5
C13 = (−1)1 + 2 4 + 1 = 5
C23 = (−1)2 + 1 6 − 4 = −2
C33 = (−1)3 + 1 − 3 − 8 = −11
adj A = `[(-3, 9, 5),(26, -5, -2),(19, 5, -11)]^T`
= `[(-3, 26, 19),(9, -16, 5),(5, -2, -11)]`
A−1 = `1/(|A|)`adj A
Now, X = A−1 B = `1/62[(-3, 26, 19),(9, -16, 5),(5, -2, -11)][(14),(4),(0)]`
X = `1/62[(-42 + 104 + 0),(126 - 64 + 0),(70 - 8 + 0)]`
X = `1/62[(-42 + 104 + 0),(126 - 64 + 0),(70 - 8 + 0)]`
X = `1/62 [(62),(62),(62)]`
C = `[(1),(1),(1)]`
Hence, X = 1, Y = 1 and Z = 1
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]
If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Solve the following determinant equation:
Solve the following determinant equation:
If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\] , where \[x, y, z \neq\] 0
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
Prove that :
Prove that
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , then x =
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Solve the following system of equations by matrix method:
Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is
Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.