हिंदी

Show that the Following Systems of Linear Equations is Consistent and Also Find Their Solutions: 2x + 3y = 5 6x + 9y = 15 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15

उत्तर

Here,
\[2x + 3y = 5 . . . (1) \]
\[6x + 9y = 15 . . . (2) \]
\[or , AX = B \]
where,
\[A = \begin{bmatrix}2 & 3 \\ 6 & 9\end{bmatrix}, X = \binom{x}{y}\text{ and }B = \binom{5}{15}\]
\[ \Rightarrow \begin{bmatrix}2 & 3 \\ 6 & 9\end{bmatrix}\binom{x}{y} = \binom{5}{15}\]
\[ \therefore \left| A \right| = \begin{vmatrix}2 & 3 \\ 6 & 9\end{vmatrix}\]
\[ = 18 - 18\]
\[ = 0\]
So, A is singular . Thus, the given system of equations is either inconsistent or it is consistent with 
\[\text{ infinitely many solutions because }\left( adj A \right)B \neq 0\text{ or }\left( adj A \right) = 0 . \]
\[ {\text{ Let }C}_{ij} {\text{ be the co-factors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = 9, C_{12} = - 6, C_{21} = - 3\text{ and }C_{22} = 2\]
\[ \therefore adj A = \begin{bmatrix}9 & - 6 \\ - 3 & 2\end{bmatrix}^T \]
\[ = \begin{bmatrix}2 & - 3 \\ - 6 & 9\end{bmatrix}\]
\[ \Rightarrow \left( adjA \right)B = \begin{bmatrix}9 & - 3 \\ - 6 & 2\end{bmatrix}\binom{5}{15}\]
\[ = \binom{45 - 45}{ - 30 + 30}\]
\[ = \binom{0}{0}\]
\[\text{ If}\left| A \right|=0\text{ and }\left( adjA \right)B=0,\text{ then the system is consistent and has infinitely many solutions.}\]
\[\text{ Thus, AX=B has infinitely many solutions.}\]
\[\text{ Substituting y=k in eq. (1), we get }\]
\[2x + 3k = 5\]
\[ \Rightarrow 2x = 5 - 3k\]
\[ \Rightarrow x = \frac{5 - 3k}{2}\text{ and }y = k\]
These values of x and y satisfy the third equation . 
\[\text{ Thus, }x = \frac{5 - 3k}{2}\text{ and }y = k \left( \text{ where k is a real number }\right) \text{ satisfy the given system of equations }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 3.2 | पृष्ठ १५

संबंधित प्रश्न

If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.


If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations

2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Evaluate the following determinant:

\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]


Evaluate

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]


Using properties of determinants prove that

\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^3 \\ 1 & b & b^3 \\ 1 & c & c^3\end{vmatrix} = 0, b \neq c\]

 


Find the value of \[\lambda\]  so that the points (1, −5), (−4, 5) and \[\lambda\]  are collinear.


Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).


Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.


If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.


Prove that :

\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]


State whether the matrix 
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.


Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]


If \[A = \left[ a_{ij} \right]\]   is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.

 

If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\]  is singular, find the value of x.


Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].


Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]


If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.

 

 


The value of the determinant  

\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]




Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0


Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12


Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1


Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1


If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations   x − 2y = 10, 2x − y − z = 8, −2y + z = 7


A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.


Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. xy and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of xy and z. What values are described in this equations?


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.


Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]


If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + = 7.


Show that  \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]

 

Solve the following by inversion method 2x + y = 5, 3x + 5y = −3


Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices


If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.


Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.


Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×