Advertisements
Advertisements
प्रश्न
If \[a, b\] and c are all non-zero and
उत्तर
We have,
\[C_1 \to C_1 - C_2 \]
\[\begin{vmatrix}a & 1 & 1 \\ - b & 1 + b & 1 \\ 0 & 1 & 1 + c\end{vmatrix} = 0\]
\[ C_2 \to C_2 - C_3 \]
\[\begin{vmatrix}a & 0 & 1 \\ - b & b & 1 \\ 0 & - c & 1 + c\end{vmatrix} = 0\]
\[\text{ Expanding along }R_1 , \text{ we get }\]
\[a(b + bc + c) + 1(bc) = 0\]
\[ \Rightarrow ab + abc + ac + bc = 0\]
\[\text{ Dividing by abc, we get }\]
\[\frac{1}{c} + 1 + \frac{1}{b} + \frac{1}{a} = 0\]
\[ \therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + 1 = 0\]
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
Using determinants show that the following points are collinear:
(3, −2), (8, 8) and (5, 2)
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that :
Prove that :
Given: x + 2y = 1
3x + y = 4
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
Solve the following system of equations by matrix method:
Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.
Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award ₹x each, ₹y each and ₹z each the three respectively values to its 3, 2 and 1 students with a total award money of ₹1,000. School Q wants to spend ₹1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
Choose the correct option:
If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is