हिंदी

The Number of Distinct Real Roots of ∣ ∣ ∣ ∣ C O S E C X Sec X Sec X Sec X C O S E C X Sec X Sec X Sec X C O S E C X ∣ ∣ ∣ ∣ = 0 Lies in the Interval − π 4 ≤ X ≤ π 4 (A) 1 (B) 2 (C) 3 (D) 0 - Mathematics

Advertisements
Advertisements

प्रश्न

The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\]  lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]

विकल्प

  • 1

  • 2

  • 3

  • 0

MCQ

उत्तर


\[\text{ Let }∆ = \begin{vmatrix} cosec x & \sec x & \sec x\\\sec x & cosec x & \sec x\\\sec x & \sec x & cosec x \end{vmatrix}\]
\[ = \left( cosec x \right)^3 \begin{vmatrix} 1 &\frac{\sec x}{cosec x} & \frac{\sec x}{cosec x}\\\frac{\sec x}{cosec x} & 1 & \frac{\sec x}{cosec x}\\\frac{\sec x}{cosec x} &\frac{\sec x}{cosec x} & 1 \end{vmatrix}\]
\[ = \left( cosec x \right)^3 \begin{vmatrix} 1 & \tan x & \tan x \\\tan x & 1 & \tan x\\\tan x & \tan x & 1 \end{vmatrix}\]
\[ = \left( cosec x \right)^3 \begin{vmatrix} 1 - \tan x & \tan x - 1 & 0 \\ 0 & 1 - \tan x & \tan x - 1\\\tan x & \tan x & 1 \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2 , R_2 \to R_2 - R_3 \right]\]
\[ = \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \begin{vmatrix} 1 & - 1 & 0 \\ 0 & 1 & - 1\\\tan x & \tan x & 1 \end{vmatrix} \left[\text{ Taking out }\left( 1 - \tan x \right)\text{ common from }R_1\text{ and }R_2 \right]\]
\[ = \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \left\{ 1\begin{vmatrix}1 & - 1 \\ \tan x & 1\end{vmatrix} + \tan x\begin{vmatrix}- 1 & 0 \\ 1 & - 1\end{vmatrix} \right\} \left[ \text{ Expanding along }C_1 \right]\]
\[ = \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \left\{ 1 + \tan x + \tan x \right\}\]
\[ = \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \left\{ 1 + 2 \tan x \right\}\]
\[ ∆ = 0\]
\[ \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \left( 1 + 2 \tan x \right) = 0\]
\[ \Rightarrow \left( 1 - \tan x \right) = 0, \left( cosec x \right)^3 = 0\text{ and }\left( 1 + 2 \tan x \right) = 0\]
or
\[\tan x = 1, cosec x = 0\text{ and }\tan x = \frac{- 1}{2}\]
\[ \Rightarrow - \frac{\pi}{4} \leq x \leq \frac{\pi}{4} \left[ \tan x = 1, \tan x = \frac{- 1}{2}\text{ are 2 real roots as cosec x = 0 has no solution }\right]\]
Thus, there are 2 solutions . 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.7 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.7 | Q 20 | पृष्ठ ९५

संबंधित प्रश्न

Evaluate the following determinant:

\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]


\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]


Show that x = 2 is a root of the equation

\[\begin{vmatrix}x & - 6 & - 1 \\ 2 & - 3x & x - 3 \\ - 3 & 2x & x + 2\end{vmatrix} = 0\]  and solve it completely.
 

 


​Solve the following determinant equation:
\[\begin{vmatrix}15 - 2x & 11 - 3x & 7 - x \\ 11 & 17 & 14 \\ 10 & 16 & 13\end{vmatrix} = 0\]

If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}z & x & y \\ z^2 & x^2 & y^2 \\ z^4 & x^4 & y^4\end{vmatrix} = \begin{vmatrix}x & y & z \\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4\end{vmatrix} = \begin{vmatrix}x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\ x & y & z\end{vmatrix} = xyz \left( x - y \right) \left( y - z \right) \left( z - x \right) \left( x + y + z \right) .\]

 


Prove that :

\[\begin{vmatrix}1 & 1 + p & 1 + p + q \\ 2 & 3 + 2p & 4 + 3p + 2q \\ 3 & 6 + 3p & 10 + 6p + 3q\end{vmatrix} = 1\]

 


\[\begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix} = \left( a^3 - 1 \right)^2\]

2x − y = − 2
3x + 4y = 3


Given: x + 2y = 1
            3x + y = 4


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{  and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.

 

If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.


Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]


The value of the determinant

\[\begin{vmatrix}a^2 & a & 1 \\ \cos nx & \cos \left( n + 1 \right) x & \cos \left( n + 2 \right) x \\ \sin nx & \sin \left( n + 1 \right) x & \sin \left( n + 2 \right) x\end{vmatrix}\text{ is independent of}\]

 


Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\] 
be an identity in x, where abcde are independent of x. Then the value of e is


Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

\[\begin{vmatrix}- 2a & a + b & a + c \\ b + a & - 2b & b + c \\ c + a & c + b & - 2c\end{vmatrix}\]
The other factor in the value of the determinant is


The maximum value of  \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)

 





Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\]  is equal to


The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is


Solve the following system of equations by matrix method:
 5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25


Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6


Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10


If \[A = \begin{bmatrix}3 & - 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{bmatrix}\] , find A−1 and hence solve the following system of equations: 

A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0


The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on


The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13


x + y = 1
x + z = − 6
x − y − 2z = 3


Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.


A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


The system of simultaneous linear equations kx + 2y – z = 1,  (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:


The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is


The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×