हिंदी

If A, B, C Are Real Numbers Such that ∣ ∣ ∣ ∣ B + C C + a A + B C + a A + B B + C a + B B + C C + a ∣ ∣ ∣ ∣ = 0 , Then Show that Either a + B + C = 0 Or, a = B = C - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]

उत्तर

\[\text{ Let }\Delta = \begin{vmatrix} b + c c + a a + b\\c + a a + b b + c\\a + b b + c c + a \end{vmatrix}\] 
\[ = \begin{vmatrix} 2( a + b + c ) & 2( a + b + c ) & 2( a + b + c)\\c + a & a + b & b + c\\a + b & b + c & c + a \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 + R_2 + R_3 \right]\] 
\[ = 2( a + b + c )\begin{vmatrix}1 & 1 & 1 \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix}\] 
\[ = 2( a + b + c )\begin{vmatrix} 1 & 0 & 0\\c + a & b - c & b - a\\a + b & c - a & c - b \end{vmatrix}\left[\text{ Applying }C_2 \to C_2 - C_1\text{ and }C_3 \to C_3 - C_1 \right]\] 
\[ = 2\left( a + b + c \right)\left\{ 1\begin{vmatrix}b - c & b - a \\ c - a & c - b\end{vmatrix} \right\}\] 
\[ = 2\left( a + b + c \right)\left\{ \left( b - c \right)\left( c - b \right) - \left( b - a \right)\left( c - a \right) \right\}\] 
\[ = - 2\left( a + b + c \right)\left\{ a^2 + b^2 + c^2 - ab - bc - ca \right\}\] 
\[ = - \left( a + b + c \right)\left\{ 2 a^2 + 2 b^2 + 2 c^2 - 2ab - 2bc - 2ca \right\}\] 
\[ = - \left( a + b + c \right)\left\{ \left( a - b \right)^2 + \left( b - c \right)^2 + \left( c - a \right)^2 \right\}\] 
\[\text{ But }\Delta = 0 \left[\text{ Given }\right]\] 
\[ \Rightarrow - \left( a + b + c \right)\left\{ \left( a - b \right)^2 + \left( b - c \right)^2 + \left( c - a \right)^2 \right\} = 0\] 
\[ \Rightarrow\text{ Either }\left( a + b + c \right) = 0 or \left( a - b \right)^2 + \left( b - c \right)^2 + \left( c - a \right)^2 = 0\] 
\[ \Rightarrow \left( a + b + c \right) = 0\text{ or }a = b = c\] 

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.2 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.2 | Q 49 | पृष्ठ ६१

संबंधित प्रश्न

Examine the consistency of the system of equations.

3x − y − 2z = 2

2y − z = −1

3x − 5y = 3


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]


If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.

 

Find the value of x, if

\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]


For what value of x the matrix A is singular? 

\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]


\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]


Show that

\[\begin{vmatrix}x + 1 & x + 2 & x + a \\ x + 2 & x + 3 & x + b \\ x + 3 & x + 4 & x + c\end{vmatrix} =\text{ 0 where a, b, c are in A . P .}\]

 


\[If \begin{vmatrix}p & b & c \\ a & q & c \\ a & b & r\end{vmatrix} = 0,\text{ find the value of }\frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c}, p \neq a, q \neq b, r \neq c .\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8\end{vmatrix} = 0\]

 


If \[a, b\] and c  are all non-zero and 

\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c\end{vmatrix} =\] 0, then prove that 
\[\frac{1}{a} + \frac{1}{b} + \frac{1}{c} +\]1
= 0

 


Find the area of the triangle with vertice at the point:

 (0, 0), (6, 0) and (4, 3)


Using determinants prove that the points (ab), (a', b') and (a − a', b − b') are collinear if ab' = a'b.

 

If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.


Prove that :

\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2 \left( a + b + c \right)^3\]

 


Prove that :

\[\begin{vmatrix}a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b\end{vmatrix} = \left( a + b + c \right)^3\]

 


3x + ay = 4
2x + ay = 2, a ≠ 0


5x + 7y = − 2
4x + 6y = − 3


3x + y = 5
− 6x − 2y = 9


x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1


If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.


If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.

 

 


If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is


Solve the following system of equations by matrix method:
 x + y + z = 6
x + 2z = 7
3x + y + z = 12


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to

 


Let a, b, c be positive real numbers. The following system of equations in x, y and z 

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, - \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text { has }\]
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions

If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + = 7.


If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x


Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.


If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.


If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then


If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×