हिंदी

∣ ∣ ∣ ∣ ∣ − a ( B 2 + C 2 − a 2 ) 2 B 3 2 C 3 2 a 3 − B ( C 2 + a 2 − B 2 ) 2 C 3 2 a 3 2 B 3 − C ( a 2 + B 2 − C 2 ) ∣ ∣ ∣ ∣ ∣ = a B C ( a 2 + B 2 + C 2 ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]

उत्तर

\[∆ = \begin{vmatrix}- a( b^2 + c^2 - a^2 ) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b( c^2 + a^2 - b^2 ) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c( a^2 + b^2 - c^2 )\end{vmatrix}\]

\[ = abc\begin{vmatrix}- b^2 - c^2 + a^2 & 2 b^2 & 2 c^2 \\ 2 a^2 & - c^2 - a^2 + b^2 & 2 c^2 \\ 2 a^2 & 2 b^2 & - a^2 - b^2 + c^2\end{vmatrix} \left[\text{ Taking out a, b and c common from }C_1 , C_2\text{ and }|C_3 \right]\]

\[ = abc\begin{vmatrix}a^2 + b^2 + c^2 & 2 b^2 & 2 c^2 \\ a^2 + b^2 + c^2 & - c^2 - a^2 + b^2 & 2 c^2 \\ a^2 + b^2 + c^2 & 2 b^2 & - a^2 - b^2 + c^2\end{vmatrix} \left[\text{ Applying }C_1\text{ to }C_1 + C_2 + C_3 \right]\]

\[ = abc( a^2 + b^2 + c^2 )\begin{vmatrix}1 & 2 b^2 & 2 c^2 \\ 1 & - c^2 - a^2 + b^2 & 2 c^2 \\ 1 & 2 b^2 & - a^2 - b^2 + c^2\end{vmatrix} \left[\text{ Taking out }a^2 + b^2 + c \text{ common from }C_1 \right]\]

\[ = abc( a^2 + b^2 + c^2 )\begin{vmatrix}1 & 2 b^2 & 2 c^2 \\ 0 & - c^2 - a^2 - b^2 & 0 \\ 0 & 0 & - a^2 - b^2 - c^2\end{vmatrix} \left[\text{ Applying }R_2 \text{ to }R_2 - R_1 \text{ and }R_3 \text{ to }R_3 - R_1 \right]\]

\[ = abc( a^2 + b^2 + c^2 )^3 \left[\text{ Expanding }\right]\]

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.2 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.2 | Q 40 | पृष्ठ ६१

संबंधित प्रश्न

If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.


Solve system of linear equations, using matrix method.

5x + 2y = 3

3x + 2y = 5


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]


If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.

 

Evaluate the following determinant:

\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]


\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]


\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]


Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]


Prove the following identity:

\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]


Prove that :

\[\begin{vmatrix}a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b\end{vmatrix} = \left( a + b + c \right)^3\]

 


\[\begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix} = \left( a^3 - 1 \right)^2\]

5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


3x + y = 5
− 6x − 2y = 9


Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]


If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]


If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.


Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


The value of the determinant

\[\begin{vmatrix}a^2 & a & 1 \\ \cos nx & \cos \left( n + 1 \right) x & \cos \left( n + 2 \right) x \\ \sin nx & \sin \left( n + 1 \right) x & \sin \left( n + 2 \right) x\end{vmatrix}\text{ is independent of}\]

 


Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

\[\begin{vmatrix}- 2a & a + b & a + c \\ b + a & - 2b & b + c \\ c + a & c + b & - 2c\end{vmatrix}\]
The other factor in the value of the determinant is


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]




If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]





The value of the determinant  

\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]




Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23


Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1


A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.


A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.

 

If \[A = \begin{bmatrix}2 & 4 \\ 4 & 3\end{bmatrix}, X = \binom{n}{1}, B = \binom{ 8}{11}\]  and AX = B, then find n.

The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is


Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to

 


The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5


If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.


In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?


If the system of linear equations

2x + y – z = 7

x – 3y + 2z = 1

x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×