हिंदी

Solve system of linear equations, using matrix method. 5x + 2y = 4 7x + 3y = 5 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve system of linear equations, using matrix method.

5x + 2y = 4

7x + 3y = 5

योग

उत्तर

The given equation,

5x + 2y = 4
7x + 3y = 5

`A = [(5,2),(7,3)], X = [(x),(y)] and B = [(4),(5)]`

`=> AX = B => X = A^-1 B`

The cofactors of the elements of matrix A are as follows

`A_11 = 3, A_12 = -7, A_21 = -2, A_22 = 5`

Matrix composed of the elements of the cofactor of A `= [(3,-7),(-2,5)]`

adj A = `[(3,-7),(-2,5)] = [(3,-2),(-7,5)]`

`abs A = abs ((5,2),(7,3)) = 15 - 14 = 1 ne 0`

`therefore A^-1 = 1/abs A (adj A)`

`= 1/1 [(3,-2),(-7,5)] = [(3,-2),(-7,5)]`

X = `A^-1 B = [(3,-2),(-7,5)][(4),(5)]`

`= [(12 - 10),(-28 + 25)] = [(2),(-3)]`

`=> [(x),(y)] = [(2),(-3)]`

=> x = 2  and  y = -3

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise 4.6 [पृष्ठ १३६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise 4.6 | Q 7 | पृष्ठ १३६

संबंधित प्रश्न

Solve system of linear equations, using matrix method.

4x – 3y = 3

3x – 5y = 7


Solve the system of linear equations using the matrix method.

2x + 3y + 3z = 5

x − 2y + z = −4

3x − y − 2z = 3


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.

 

Evaluate :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]


\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]


Prove the following identity:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]

 


If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]


Find the area of the triangle with vertice at the point:

(2, 7), (1, 1) and (10, 8)


Using determinants show that the following points are collinear:

(5, 5), (−5, 1) and (10, 7)


Using determinants prove that the points (ab), (a', b') and (a − a', b − b') are collinear if ab' = a'b.

 

Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.


Find values of k, if area of triangle is 4 square units whose vertices are 

(−2, 0), (0, 4), (0, k)


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2 \left( a + b + c \right)^3\]

 


Prove that :

\[\begin{vmatrix}a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b\end{vmatrix} = \left( a + b + c \right)^3\]

 


Prove that :

\[\begin{vmatrix}x + 4 & x & x \\ x & x + 4 & x \\ x & x & x + 4\end{vmatrix} = 16 \left( 3x + 4 \right)\]

\[\begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix} = \left( a^3 - 1 \right)^2\]

2x − y = 17
3x + 5y = 6


3x + y = 5
− 6x − 2y = 9


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.

 

Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]


For what value of x is the matrix  \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\]  singular?


Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\]  = 8, then find the value of x.


The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is 



There are two values of a which makes the determinant  \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\]  equal to 86. The sum of these two values is

 


Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23


Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12


Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13


Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10


3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

x + y = 1
x + z = − 6
x − y − 2z = 3


System of equations x + y = 2, 2x + 2y = 3 has ______


Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices


Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.


The value of λ, such that the following system of equations has no solution, is

`2x - y - 2z = - 5`

`x - 2y + z = 2`

`x + y + lambdaz = 3`


A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×