हिंदी

Solve system of linear equations, using matrix method. 2x – y = –2 3x + 4y = 3 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3

योग

उत्तर

Given system of equations,

2x - y = - 2
3x + 4y = 3

The system of equations can be written as AX = B. Hence, x = A-1 B.

`A = [(2,-1),(3,4)], X = [(x),(y)]  and B = [(-2),(3)]`

`=> abs A = [(2,-1),(3,4)] = 8 + 3 = 11 ne 0`

The cofactors of the elements of matrix A are as follows:

`A_11 = (-1)^(1 + 1)  M_11 = 4, A_12 = (-1)^(1 + 2)  M_12 = - 3`

`A_21 = (-1)^(2 + 1)  M_21 = (-1)(-1) = 1,`

`A_22 = (-1)^(2 + 2)  M_22 = (-1)^4 xx 2 = 2`

Matrix made of elements of cofactor of A = `[(4,-3),(1,2)]`

adj A `= [(4,-3),(1,2)] = [(4,1),(-3,2)]`

`A^-1 = 1/abs A (adj A) = 1/11 [(4,1),(-3,2)]`

`therefore X = A^-1 B = 1/11 [(4,1),(-3,2)] [(-2),(3)]`

`= 1/11 [(-8 + 3),(6 + 6)]`

`= 1/11 [(-5),(12)]`

`= [(-5/11),(12/11)]`

`=> [(x),(y)] = [(-5/11),(12/11)]`

`=> x = - 5/11  and y = 12/11`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise 4.6 [पृष्ठ १३६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise 4.6 | Q 8 | पृष्ठ १३६

संबंधित प्रश्न

Solve system of linear equations, using matrix method.

2x + y + z = 1

x – 2y – z =` 3/2`

3y – 5z = 9


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.

 

Find the value of x, if

\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]


Using properties of determinants prove that

\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]


Prove the following identities:

\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]


Prove the following identity:

`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`

 


\[If \begin{vmatrix}p & b & c \\ a & q & c \\ a & b & r\end{vmatrix} = 0,\text{ find the value of }\frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c}, p \neq a, q \neq b, r \neq c .\]

 


​Solve the following determinant equation:
\[\begin{vmatrix}15 - 2x & 11 - 3x & 7 - x \\ 11 & 17 & 14 \\ 10 & 16 & 13\end{vmatrix} = 0\]

Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)


Find the value of \[\lambda\]  so that the points (1, −5), (−4, 5) and \[\lambda\]  are collinear.


Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.


Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


Find values of k, if area of triangle is 4 square units whose vertices are 
(k, 0), (4, 0), (0, 2)


Prove that :

\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2 \left( a + b + c \right)^3\]

 


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1


x + 2y = 5
3x + 6y = 15


Write the value of the determinant 

\[\begin{vmatrix}a & 1 & b + c \\ b & 1 & c + a \\ c & 1 & a + b\end{vmatrix} .\]

 


If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]


If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.


If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.


If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]




The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\]  lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Solve the following system of equations by matrix method:

\[\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0\]

 


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to

 


If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + = 7.


Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices


A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is


In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?


Let `θ∈(0, π/2)`. If the system of linear equations,

(1 + cos2θ)x + sin2θy + 4sin3θz = 0

cos2θx + (1 + sin2θ)y + 4sin3θz = 0

cos2θx + sin2θy + (1 + 4sin3θ)z = 0

has a non-trivial solution, then the value of θ is

 ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×