हिंदी

Show that the Following Systems of Linear Equations is Consistent and Also Find Their Solutions: X + Y + Z = 6 X + 2y + 3z = 14 X + 4y + 7z = 30 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30

उत्तर

Here,
\[x + y + z = 6 . . . (1)\]
\[x + 2y + 3z = 14 . . . (2)\]
\[x + 4y + 7z = 30 . . . (3)\]
\[or, AX = B \]
where, 
\[ A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}6 \\ 14 \\ 30\end{bmatrix}\]
\[\begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}6 \\ 14 \\ 30\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7\end{vmatrix}\]
\[ = 1\left( 14 - 12 \right) - 1\left( 7 - 3 \right) + 1(4 - 2)\]
\[ = 2 - 4 + 2\]
\[ = 0\]
So, A is singular . Thus, the given system of equations is either inconsistent or it is consistent with
\[\text{ infinitely many solutions because }\left( adj A \right)B \neq 0\text{ or }\left( adj A \right) = 0 . \]
\[ {\text{ Let }C}_{ij} {\text{ be the co-factors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right]. \text{Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}2 & 3 \\ 4 & 7\end{vmatrix} = 2, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}1 & 3 \\ 1 & 7\end{vmatrix} = - 4 , C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}1 & 2 \\ 1 & 4\end{vmatrix} = 2\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & 1 \\ 4 & 7\end{vmatrix} = - 3, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 1 \\ 1 & 7\end{vmatrix} = 6, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 1 \\ 1 & 4\end{vmatrix} = - 3\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & 1 \\ 2 & 3\end{vmatrix} = 1 , C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 1 \\ 1 & 3\end{vmatrix} = - 2 , C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 1 \\ 1 & 2\end{vmatrix} = 1\]
\[adj A = \begin{bmatrix}2 & - 4 & 2 \\ - 3 & 6 & - 3 \\ 1 & - 2 & 1\end{bmatrix}^T \]
\[ = \begin{bmatrix}2 & - 3 & 1 \\ - 4 & 6 & - 2 \\ 2 & - 3 & 1\end{bmatrix}\]
\[\left( adj A \right)B = \begin{bmatrix}2 & - 3 & 1 \\ - 4 & 6 & - 2 \\ 2 & - 3 & 1\end{bmatrix}\begin{bmatrix}6 \\ 14 \\ 30\end{bmatrix}\]
\[ = \begin{bmatrix}12 - 42 + 30 \\ - 24 + 84 - 60 \\ 12 - 42 + 30\end{bmatrix}\]
\[ = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[\text{ If }\left| A \right|=0\text{ and }\left( adjA \right)B=0, \text{ then the system is consistent and has infinitely many solutions.}\]
\[\text{ Thus, } AX=B \text{ has infinitely many solutions}.\]
\[\text{ Substituting z=k in eq. (1) and eq. (2), we get}\]
\[x + y = 6 - k \text{ and }x + 2y = 14 - 3k\]
\[\begin{bmatrix}1 & 1 \\ 1 & 2\end{bmatrix}\binom{x}{y} = \binom{6 - k}{14 + 3k}\]
Now,
\[\left| A \right| = \begin{vmatrix}1 & 1 \\ 1 & 2\end{vmatrix}\]
\[ = 2 - 1 = 1 \neq 0\]
\[adj A = \begin{vmatrix}2 & - 1 \\ - 1 & 1\end{vmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{1}\begin{bmatrix}2 & - 1 \\ - 1 & 1\end{bmatrix}\]
\[ \therefore X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{1}\begin{bmatrix}2 & - 1 \\ - 1 & 1\end{bmatrix}\binom{6 - k}{14 - 3k}\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{1}\binom{12 - 2k - 14 + 3k}{ - 6 + k + 14 - 3k}\]
\[ \Rightarrow \binom{x}{y} = \binom{\frac{k - 2}{1}}{\frac{8 - 2k}{1}}\]
\[ \therefore x = k - 2, y = 8 - 2k\text{ and }z = k\]
These values of x, y and z also satisfy the third equation .
\[\text{ Thus, }x = k - 2, y = 8 - 2k\text{ and }z = k \left(\text{ where k is a real number }\right)\text{ satisfy the given system of equations }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 3.5 | पृष्ठ १५

संबंधित प्रश्न

Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3


Evaluate the following determinant:

\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]


\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.


For what value of x the matrix A is singular? 

\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]


\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^2 \\ 1 & a & a^2 \\ 1 & b & b^2\end{vmatrix} = 0, a \neq b\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^3 \\ 1 & b & b^3 \\ 1 & c & c^3\end{vmatrix} = 0, b \neq c\]

 


If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of  \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\]  , where \[x, y, z \neq\] 0


Find the value of \[\lambda\]  so that the points (1, −5), (−4, 5) and \[\lambda\]  are collinear.


Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b\end{vmatrix} = \left( a + b + c \right)^3\]

 


Prove that :

\[\begin{vmatrix}1 & a^2 + bc & a^3 \\ 1 & b^2 + ca & b^3 \\ 1 & c^2 + ab & c^3\end{vmatrix} = - \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a^2 + b^2 + c^2 \right)\]

 


Prove that

\[\begin{vmatrix}a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1\end{vmatrix} = 1 + a^2 + b^2 + c^2\]

3x + y = 19
3x − y = 23


2x + 3y = 10
x + 6y = 4


3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.


A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission 

Month Sale of units Total commission
drawn (in Rs)
  A B C  
Jan 90 100 20 800
Feb 130 50 40 900
March 60 100 30 850


Find out the rates of commission on items A, B and C by using determinant method.


Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0


For what value of x, the following matrix is singular?

\[\begin{bmatrix}5 - x & x + 1 \\ 2 & 4\end{bmatrix}\]

 


Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]


Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]


The determinant  \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]


 


The maximum value of  \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)

 





The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is 



Solve the following system of equations by matrix method:
 x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1


Solve the following system of equations by matrix method:

\[\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0\]

 


Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5


2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0


3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

Find the inverse of the following matrix, using elementary transformations: 

`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`


Solve the following equations by using inversion method.

x + y + z = −1, x − y + z = 2 and x + y − z = 3


If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if


If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×