Advertisements
Advertisements
प्रश्न
Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5
उत्तर
The given system of equations can be expressed as follows:
\[AX = B\]
Here,
\[ A = \begin{bmatrix}4 & - 2 \\ 6 & - 3\end{bmatrix}, X = \binom{x}{y}\text{ and }B = \binom{3}{5}\]
\[ \left| A \right| = \begin{vmatrix}4 & - 2 \\ 6 & - 3\end{vmatrix}\]
\[ = \left( - 12 + 12 \right)\]
\[ = 0\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A =\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = - \left( 1 \right)^{1 + 1} \left( - 3 \right) = - 3, C_{12} = - \left( 1 \right)^{1 + 2} \left( 6 \right) = - 6\]
\[ C_{21} = - \left( 1 \right)^{2 + 1} \left( - 2 \right) = 2, C_{22} = - \left( 1 \right)^{2 + 2} \left( 4 \right) = 4\]
\[adj A = \begin{bmatrix}- 3 & - 6 \\ 2 & 4\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 3 & 2 \\ - 6 & 4\end{bmatrix}\]
\[\left( adj A \right) B = \begin{bmatrix}- 3 & 2 \\ - 6 & 4\end{bmatrix}\binom{3}{5}\]
\[ = \binom{ - 9 + 10}{ - 18 + 20}\]
\[ = \binom{1}{2} \neq 0\]
Hence, the given system of equations is inconsistent.
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Examine the consistency of the system of equations.
5x − y + 4z = 5
2x + 3y + 5z = 2
5x − 2y + 6z = −1
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]
Solve the following determinant equation:
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
Prove that :
Prove that :
Prove that
Given: x + 2y = 1
3x + y = 4
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
If \[A = \left[ a_{ij} \right]\] is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , then x =
The value of the determinant
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
Show that \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.