हिंदी

Using Determinants, Find the Area of the Triangle Whose Vertices Are (1, 4), (2, 3) and (−5, −3). Are the Given Points Collinear? - Mathematics

Advertisements
Advertisements

प्रश्न

Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?

उत्तर

\[∆ = \frac{1}{2}\begin{vmatrix}1 & 4 & 1 \\ 2 & 3 & 1 \\ - 5 & - 3 & 1\end{vmatrix}\] 
\[ = \frac{1}{2}\begin{vmatrix}1 & 4 & 1 \\ 1 & - 1 & 0 \\ - 5 & - 3 & 1\end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1 \right]\]
\[ = \frac{1}{2}\begin{vmatrix}1 & 4 & 1 \\ 1 & - 1 & 0 \\ - 6 & - 7 & 0\end{vmatrix} \left[\text{ Applying }R_3 \to R_3 - R_1 \right]\] 
\[ = \frac{1}{2}\begin{vmatrix}1 & - 1 \\ - 6 & - 7\end{vmatrix}\]
\[ = \frac{1}{2}\left( - 7 - 6 \right)\] 
\[ = \frac{13}{2}\text{ square units }\left[ \because\text{ Area cannot be negative }\right]\]
Therefore, (1, 4), (2, 3) and (−5, −3) are not collinear because,

\[\begin{vmatrix}1 & 4 & 1 \\ 2 & 3 & 1 \\ - 5 & - 3 & 1\end{vmatrix}\]  is not equal to 0.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.3 [पृष्ठ ७१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.3 | Q 7 | पृष्ठ ७१

संबंधित प्रश्न

Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


Solve system of linear equations, using matrix method.

5x + 2y = 3

3x + 2y = 5


Evaluate

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]


\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]


Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^3 \\ 1 & b & b^3 \\ 1 & c & c^3\end{vmatrix} = 0, b \neq c\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & 1 & x \\ p + 1 & p + 1 & p + x \\ 3 & x + 1 & x + 2\end{vmatrix} = 0\]

If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]


Find the area of the triangle with vertice at the point:

(3, 8), (−4, 2) and (5, −1)


Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)


If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.


Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


Find values of k, if area of triangle is 4 square units whose vertices are 

(−2, 0), (0, 4), (0, k)


3x + ay = 4
2x + ay = 2, a ≠ 0


5x + 7y = − 2
4x + 6y = − 3


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\] 
\[ x + \lambda y + 2z = 0\] 
\[ 2x + \lambda z = 0\]

 


If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]


Write the value of 

\[\begin{vmatrix}\sin 20^\circ & - \cos 20^\circ\\ \sin 70^\circ& \cos 70^\circ\end{vmatrix}\]

If |A| = 2, where A is 2 × 2 matrix, find |adj A|.


If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.


If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\]  is equal to 


Solve the following system of equations by matrix method:
 5x + 2y = 3
 3x + 2y = 5


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4


The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on


Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.


Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.


If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if


Choose the correct option:

If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is


Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.


Let `θ∈(0, π/2)`. If the system of linear equations,

(1 + cos2θ)x + sin2θy + 4sin3θz = 0

cos2θx + (1 + sin2θ)y + 4sin3θz = 0

cos2θx + sin2θy + (1 + 4sin3θ)z = 0

has a non-trivial solution, then the value of θ is

 ______.


The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×