Advertisements
Advertisements
प्रश्न
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
उत्तर
Expanding along R1, we get
\[ \Rightarrow - x^3 - x + x \sin^2 \theta + \sin\theta\cos\theta - \sin\theta\cos\theta + x \cos^2 \theta = 8\]
\[ \Rightarrow - x^3 - x + x\left( \sin^2 \theta + \cos^2 \theta \right) = 8\]
\[ \Rightarrow - x^3 - x + x = 8\]
\[ \Rightarrow x^3 + 8 = 0\]
\[ \Rightarrow \left( x + 2 \right)\left( x^2 - 2x + 4 \right) = 0\]
\[ \Rightarrow x + 2 = 0 \left[ \because x^2 - 2x + 4 > 0 \forall x \right]\]
\[ \Rightarrow x = - 2\]
संबंधित प्रश्न
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.
Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Solve the following determinant equation:
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Find values of k, if area of triangle is 4 square units whose vertices are
(k, 0), (4, 0), (0, 2)
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
2x − y = 17
3x + 5y = 6
5x + 7y = − 2
4x + 6y = − 3
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]
The value of the determinant
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
Solve the following system of equations by matrix method:
2x + 6y = 2
3x − z = −8
2x − y + z = −3
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4
Solve the following by inversion method 2x + y = 5, 3x + 5y = −3
`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.
If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.
Using the matrix method, solve the following system of linear equations:
`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.