Advertisements
Advertisements
प्रश्न
A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission
Month | Sale of units | Total commission drawn (in Rs) |
||
A | B | C | ||
Jan | 90 | 100 | 20 | 800 |
Feb | 130 | 50 | 40 | 900 |
March | 60 | 100 | 30 | 850 |
Find out the rates of commission on items A, B and C by using determinant method.
उत्तर
Let x, y and z be the rates of commission on items A, B and C respectively. Based on the given data, we get
\[90x + 100y + 20z = 800\]
\[130x + 50y + 40z = 900\]
\[60x + 100y + 30z = 850\]
Dividing all the equations by 10 on both sides, we get
\[9x + 10y + 2z = 80\]
\[13x + 5y + 4z = 90\]
\[6x + 10y + 3z = 85\]
\[D = \begin{vmatrix}9 & 10 & 2 \\ 13 & 5 & 4 \\ 6 & 10 & 3\end{vmatrix} \left[\text{ Expressing the equation as a determinant }\right]\]
\[ = 9(15 - 40) - 10(39 - 24) + 2(130 - 30)\]
\[ = 9( - 25) - 10(15) + 2(100)\]
\[ = - 175\]
\[ D_1 = \begin{vmatrix}80 & 10 & 2 \\ 90 & 5 & 4 \\ 85 & 10 & 3\end{vmatrix}\]
\[ = 80(15 - 40) - 10(270 - 340) + 2(900 - 425)\]
\[ = 80( - 25) - 10( - 70) + 2(475)\]
\[ = - 350\]
\[ D_2 = \begin{vmatrix}9 & 80 & 2 \\ 13 & 90 & 4 \\ 6 & 85 & 3\end{vmatrix}\]
\[ = 9(270 - 340) - 80(39 - 24) + 2(1105 - 540)\]
\[ = 9( - 70) - 80(15) + 2(565)\]
\[ = - 700\]
\[ D_3 = \begin{vmatrix}9 & 10 & 80 \\ 13 & 5 & 90 \\ 6 & 10 & 85\end{vmatrix}\]
\[ = 9(425 - 900) - 10(1105 - 540) + 80(130 - 30)\]
\[ = 9( - 475) - 10(565) + 80(100)\]
\[ = - 1925\]
Thus,
\[x = \frac{D_1}{D} = \frac{- 350}{- 175} = 2\]
\[y = \frac{D_2}{D} = \frac{- 700}{- 175} = 4\]
\[z = \frac{D_3}{D} = \frac{- 1925}{- 175} = 11\]
Therefore, the rates of commission on items A, B and C are 2, 4 and 11, respectively.
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Examine the consistency of the system of equations.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
Examine the consistency of the system of equations.
5x − y + 4z = 5
2x + 3y + 5z = 2
5x − 2y + 6z = −1
Solve system of linear equations, using matrix method.
2x – y = –2
3x + 4y = 3
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.
Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
Solve the following determinant equation:
Prove that :
Prove that :
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
x + 2y = 5
3x + 6y = 15
Find the value of the determinant
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]
Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]
Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]
The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]
Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.
The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.