हिंदी

Show that the Following Systems of Linear Equations is Consistent and Also Find Their Solutions: X − Y + Z = 3 2x + Y − Z = 2 −X −2y + 2z = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1

उत्तर

 Here,
\[x - y + z = 3 . . . (1)\]
\[2x + y - z = 2 . . . (2)\]
\[ - x - 2y + 2z = 1 . . . (3)\]
or, AX = B
where, 
\[ A = \begin{bmatrix}1 & - 1 & 1 \\ 2 & 1 & - 1 \\ - 1 & - 2 & 2\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 2 \\ 1\end{bmatrix}\]
\[\begin{bmatrix}1 & - 1 & 1 \\ 2 & 1 & - 1 \\ - 1 & - 2 & 2\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}3 \\ 2 \\ 1\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}1 & - 1 & 1 \\ 2 & 1 & - 1 \\ - 1 & - 2 & 2\end{vmatrix}\]
\[ = 1\left( 2 - 2 \right) + 1\left( 4 - 1 \right) + 1( - 4 + 1)\]
\[ = 0 + 3 - 3\]
\[ = 0\]
So, A is singular . Thus, the given system of equations is either inconsistent or it is consistent with 
\[\text{ infinitely many solutions because } \left( adj A \right)B \neq 0\text{ or }\left( adj A \right)B = 0 . \]
\[ {\text{ Let }C}_{ij} {\text{ be the co-factors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}1 & - 1 \\ - 2 & 2\end{vmatrix} = 0, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & - 1 \\ - 1 & 2\end{vmatrix} = - 3, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & 1 \\ - 1 & - 2\end{vmatrix} = - 3\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 1 & 1 \\ - 2 & 2\end{vmatrix} = 0, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 1 \\ - 1 & 2\end{vmatrix} = 3, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & - 1 \\ - 1 & - 2\end{vmatrix} = 3\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 1 & 1 \\ 1 & - 1\end{vmatrix} = 0, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 1 \\ 2 & - 1\end{vmatrix} = 3 , C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & - 1 \\ 2 & 1\end{vmatrix} = 3\]
\[adj A = \begin{bmatrix}0 & - 3 & - 3 \\ 0 & 3 & 3 \\ 0 & 3 & 3\end{bmatrix}^T \]
\[ = \begin{bmatrix}0 & 0 & 0 \\ - 3 & 3 & 3 \\ - 3 & 3 & 3\end{bmatrix}\]
\[\left( adj A \right)B = \begin{bmatrix}0 & 0 & 0 \\ - 3 & 3 & 3 \\ - 3 & 3 & 3\end{bmatrix}\begin{bmatrix}3 \\ 2 \\ 1\end{bmatrix}\]
\[ = \begin{bmatrix}0 \\ - 9 + 6 + 3 \\ - 9 + 6 + 3\end{bmatrix}\]
\[ = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[\text{ If }\left| A \right|=0\text{ and }\left( adjA \right)B=0, \text{ then the system is consistent and has infinitely many solutions. }\]
Thus, AX=B has infinitely many solutions.
\[\text{ Substituting z=k in eq.}\left( 1 \right)\text{ and eq.}\left( 2 \right),\text{ we get }\]
\[x - y = 3 - k\text{ and }2x + y = 2 + k\]
\[\begin{bmatrix}1 & - 1 \\ 2 & 1\end{bmatrix}\binom{x}{y} = \binom{3 - k}{2 + k}\]
Now,
\[\left| A \right| = \begin{vmatrix}1 & - 1 \\ 2 & 1\end{vmatrix}\]
\[ = 1 + 2 = 3 \neq 0\]
\[adj A = \begin{vmatrix}1 & 2 \\ - 1 & 1\end{vmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{3}\begin{bmatrix}1 & 1 \\ - 2 & 1\end{bmatrix}\]
\[ \therefore X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{3}\begin{bmatrix}1 & 1 \\ - 2 & 1\end{bmatrix}\binom{3 - k}{2 + k}\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{3}\binom{3 - k + 2 + k}{ - 6 + 2k + 2 + k}\]
\[ \Rightarrow \binom{x}{y} = \binom{\frac{5}{3}}{\frac{3k - 4}{3}}\]
\[ \therefore x = \frac{5}{3}, y = \frac{3k - 4}{3}\text{ and }z = k\]
These values of x, y and z also satisfy the third equation .
\[\text{ Thus, }x = \frac{5}{3}, y = \frac{3k - 4}{3}\text{ and }z = k \left(\text{ where k is a real number} \right)\text{ satisfy the given system of equations }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 3.4 | पृष्ठ १५

संबंधित प्रश्न

Examine the consistency of the system of equations.

x + 2y = 2

2x + 3y = 3


Evaluate the following determinant:

\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix}\]


Evaluate

\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.

 

If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.

 

Find the value of x, if

\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]


Evaluate the following:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]


Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]


Prove the following identities:

\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]


​Solve the following determinant equation:

\[\begin{vmatrix}x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4\end{vmatrix} = 0\]

 


Show that
`|(x-3,x-4,x-alpha),(x-2,x-3,x-beta),(x-1,x-2,x-gamma)|=0`, where α, β, γ are in A.P.

 


Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c\end{vmatrix} = 3abc - a^3 - b - c^3\]

 


Prove that :

\[\begin{vmatrix}a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b\end{vmatrix} = \left( a + b + c \right)^3\]

 


5x + 7y = − 2
4x + 6y = − 3


3x + y = 5
− 6x − 2y = 9


x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1


Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\] 
\[ x + \lambda y + 2z = 0\] 
\[ 2x + \lambda z = 0\]

 


If A is a singular matrix, then write the value of |A|.

 

Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]


\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]


Solve the following system of equations by matrix method:
 5x + 2y = 3
 3x + 2y = 5


Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23


Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15


Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.


Find the inverse of the following matrix, using elementary transformations: 

`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`


The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices


`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.


The system of simultaneous linear equations kx + 2y – z = 1,  (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×