Advertisements
Advertisements
प्रश्न
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
उत्तर
\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
\[ = \begin{vmatrix}\sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} & 5 & \sqrt{10} \\ 3 & \sqrt{15} & 5\end{vmatrix} + \begin{vmatrix}\sqrt{23} & \sqrt{5} & \sqrt{5} \\ \sqrt{46} & 5 & \sqrt{10} \\ \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
\[ = \sqrt{3}\begin{vmatrix}1 & \sqrt{5} & \sqrt{5} \\ \sqrt{5} & 5 & \sqrt{10} \\ \sqrt{3} & \sqrt{15} & 5\end{vmatrix} + \sqrt{23}\begin{vmatrix}1 & \sqrt{5} & \sqrt{5} \\ \sqrt{2} & 5 & \sqrt{10} \\ \sqrt{5} & \sqrt{15} & 5\end{vmatrix}\]
\[ = \sqrt{3} \times \sqrt{5}\begin{vmatrix}1 & 1 & \sqrt{5} \\ \sqrt{5} & \sqrt{5} & \sqrt{10} \\ \sqrt{3} & \sqrt{3} & 5\end{vmatrix} + \sqrt{23} \times \sqrt{5}\begin{vmatrix}1 & \sqrt{5} & 1 \\ \sqrt{2} & 5 & \sqrt{2} \\ \sqrt{5} & \sqrt{15} & \sqrt{5}\end{vmatrix}\]
\[ = 0 + 0\]
\[ = 0\]
APPEARS IN
संबंधित प्रश्न
If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.
Examine the consistency of the system of equations.
5x − y + 4z = 5
2x + 3y + 5z = 2
5x − 2y + 6z = −1
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]
Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
Prove that :
5x + 7y = − 2
4x + 6y = − 3
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
Write the value of the determinant
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. x, y and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of x, y and z. What values are described in this equations?
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0
x + y = 1
x + z = − 6
x − y − 2z = 3
On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.