हिंदी

Solve the following system of equations by using inversion method x + y = 1, y + z = 53, z + x = 43 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`

योग

उत्तर

Matrix form of the given system of equations is

`[(1, 1, 0),(0, 1, 1),(1, 0, 1)] [(x),(y),(z)] [(1),(5/3),(4/3)]`

This is of the form AX = B,

where A = `[(1, 1, 0),(0, 1, 1),(1, 0, 1)]` X = `[(x),(y),(z)]` B = `[(1),(5/3),(4/3)]`

Pre-multiplying AX = B by A−1, we get

A−1(AX) = A−1B

∴ (A−1A)X = A−1B

∴ IX = A−1B

∴ X = A−1B      .......(i)

To determine X, we have to find A−1

|A| = `1|(1, 1),(0, 1)| - 1|(0, 1),(1, 1)| + 0`

= 1(1 – 0) –1(0 – 1)

= 1 + 1

= 2 ≠ 0

∴ A−1 exists.

Consider, AA−1 = I

∴ `[(1, 1, 0),(0, 1, 1),(1, 0, 1)]` A−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

Applying R3 → R3 – R1, we get

`[(1, 1, 0),(0, 1, 1),(1, -1, 1)]` A−1 = `[(1, 0, 0),(0, 1, 0),(-1, 0, 1)]`

Applying R2 → R2 − R3, we get

`[(1, 1, 0),(0, 2, 0),(0, -1, 1)]` A−1 = `[(1, 0, 0),(1, 1, -1),(-1, 0, 1)]`

Applying R1 → `(1/2)` R2, we get

`[(1, 1, 0),(0, 1, 0),(0, -1, 1)]` A−1 = `[(1, 0, 0),(1/2, 1/2, -1/2),(-1, 0, 1)]`

Applying R1 → R1 − R2, we get

`[(1, 1, 0),(0, 1, 0),(0, -1, 1)]` A−1 = `[(1/2, 1/2, 1/2),(1/2, 1/2, -1/2),(-1, 0, 1)]`

Applying R3 → R3 + R2, we get

`[(1, 1, 0),(0, 1, 0),(0, 0, 1)]` A−1 = `[(1/2, 1/2, 1/2),(1/2, 1/2, -1/2),(-1/2, 1/2, 1/2)]`

∴ A−1 = `[(1/2, 1/2, 1/2),(1/2, 1/2, -1/2),(-1/2, 1/2, 1/2)]`

∴ X = `[(1/2, 1/2, 1/2),(1/2, 1/2, -1/2),(-1/2, 1/2, 1/2)] [(1),(5/3),(4/3)]`       .......[From (i)]

∴ `[(x),(y),(z)] = [(1/3),(2/3),(3/1)]`

∴ By equality of matrices, we get

x = `1/3` y = `2/3` and z = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.2: Matrics - Long Answers III

संबंधित प्रश्न

Solve system of linear equations, using matrix method.

5x + 2y = 3

3x + 2y = 5


Solve the system of linear equations using the matrix method.

2x + 3y + 3z = 5

x − 2y + z = −4

3x − y − 2z = 3


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]


Evaluate the following determinant:

\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]


\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]


Show that x = 2 is a root of the equation

\[\begin{vmatrix}x & - 6 & - 1 \\ 2 & - 3x & x - 3 \\ - 3 & 2x & x + 2\end{vmatrix} = 0\]  and solve it completely.
 

 


Using determinants prove that the points (ab), (a', b') and (a − a', b − b') are collinear if ab' = a'b.

 

Find values of k, if area of triangle is 4 square units whose vertices are 
(k, 0), (4, 0), (0, 2)


Find values of k, if area of triangle is 4 square units whose vertices are 

(−2, 0), (0, 4), (0, k)


\[\begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix} = \left( a^3 - 1 \right)^2\]

x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1


Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\] 
\[ x + \lambda y + 2z = 0\] 
\[ 2x + \lambda z = 0\]

 


If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.


The value of the determinant  

\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]




The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is 



If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is


Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5


Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3


If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations  x − 2y = 10, 2x + y + 3z = 8, −2y + z = 7.

If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.


Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award ₹x each, ₹y each and ₹z each the three respectively values to its 3, 2 and 1 students with a total award money of ₹1,000. School Q wants to spend ₹1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.


Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]


x + y = 1
x + z = − 6
x − y − 2z = 3


Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).


If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.


`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.


The system of simultaneous linear equations kx + 2y – z = 1,  (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:


What is the nature of the given system of equations

`{:(x + 2y = 2),(2x + 3y = 3):}`


Choose the correct option:

If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is


If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×