Advertisements
Advertisements
प्रश्न
If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1
उत्तर
AB = `[(2, 3),(1, 2)][(1, 0),(3, 1)]``
= `[(2 + 9, 0 + 3),(1 + 6, 0 + 2)]`
= `[(11, 3),(7, 2)]`
Now, |AB| = `|(11, 3),(7, 2)|`
= 22 − 21
= 1 ≠ 0
∴ (AB)−1 exists.
Consider, (AB)(AB)−1 = I
∴ `[(11, 3),(7, 2)]` (AB)−1 = `[(1, 0),(0, 1)]`
Applying R1 → 2R1,
`[(22, 6),(7, 2)]` (AB)−1 = `[(2, 0),(0, 1)]`
Applying R1 → R1 − 3R2,
`[(1, 0),(7, 2)]` (AB)−1 = `[(2, -3),(0, 1)]`
Applying R2 → R2 − 7R1,
`[(1, 0),(0, 2)]` (AB)−1 = `[(2, -3),(-14, 22)]`
Applying R2 → `(1/2)` R2
`[(1, 0),(0, 1)]` (AB)−1 = `[(2, -3),(-7, 11)]`
∴ (AB)−1 = `[(2, -3),(-7, 11)]` .......(1)
|A| = `|(2,3),(1,2)| = 4 - 3 = 1 ne 0`
∴ A−1 exists.
Consider, AA−1 = I
∴ `[(2, 3),(1, 2)]` A−1 = `[(1, 0),(0, 1)]`
Applying R1 ↔ R2,
`[(1, 2),(2, 3)]` A−1 = `[(0, 1),(1, 0)]`
Aplying 2R2 → R1,
`[(1, 2),(0, -1)]` A−1 = `[(0, 1),(1, -2)]`
Applying (−1)R2 ↔ R1,
`[(1, 2),(0, 1)]` A−1 = `[(0, 1),(-1, 2)]`
Applying R1 ↔ R2,
`[(1, 0),(0, 1)]` A−1 = `[(2, -3),(-1, 2)]`
∴ A−1 = `[(2, -3),(-1, 2)]`
|B| = `|(1, 0),(3, 1)|`
= 1 − 0
= 1 ≠ 0
∴ B−1 exists.
Consider, BB−1 = I
∴ `[(1, 0),(3, 1)]` B−1 = `[(1, 0),(0, 1)]`
Applying R2 ↔ 3R1,
`[(1, 0),(0, 1)]` A−1 = `[(1, 0),(-3, 1)]`
∴ B−1 = `[(1, 0),(-3, 1)]`
∴ B−1. A−1 = `[(1, 0),(-3, 1)],[(2, -3),(-1, 2)]`
= `[(2 - 0, -3+0),(-6-1, 9+2)]`
= `[(2, -3),(-7,11)]` .......(2)
From (1) and (2), (AB)−1 = B−1. A−1
APPEARS IN
संबंधित प्रश्न
Apply the given elementary transformation of the following matrix.
A = `[(5,4),(1,3)]`, C1↔ C2; B = `[(3,1),(4,5)]` R1↔ R2.
What do you observe?
Apply the given elementary transformation of the following matrix.
A = `[(1,2,-1),(0,1,3)]`, 2C2
B = `[(1,0,2),(2,4,5)]`, −3R1
Find the addition of the two new matrices.
Apply the given elementary transformation of the following matrix.
A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2
Apply the given elementary transformation of the following matrix.
Use suitable transformation on `[(1,2),(3,4)]` to convert it into an upper triangular matrix.
Apply the given elementary transformation of the following matrix.
Transform `[(1,-1,2),(2,1,3),(3,2,4)]` into an upper triangular matrix by suitable column transformations.
The total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ 35,000. The shopkeeper wants a profit of ₹ 1000 per T.V. set and ₹ 500 per V.C.R. He sells 2 T.V. sets and 1 V.C.R. and gets the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. set and a V.C.R.
If A = `[(2,1,3),(1,0,1),(1,1,1)]`, then reduce it to I3 by using row transformations.
Check whether the following matrix is invertible or not:
`[(1,0),(0,1)]`
Check whether the following matrix is invertible or not:
`((1,1),(1,1))`
Check whether the following matrix is invertible or not:
`((1,2),(3,3))`
Check whether the following matrix is invertible or not:
`((2,3),(10,15))`
Check whether the following matrix is invertible or not:
`[(cos theta, sin theta),(-sin theta, cos theta)]`
Check whether the following matrix is invertible or not:
`((3,4,3),(1,1,0),(1,4,5))`
Check whether the following matrix is invertible or not:
`((1,2,3),(2,-1,3),(1,2,3))`
Check whether the following matrix is invertible or not:
`((1,2,3),(3,4,5),(4,6,8))`
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, find AB and (AB)-1 . Verify that (AB)-1 = B-1.A-1.
Find the matrix X such that AX = B, where A = `[(1,2),(-1,3)]` and B = `[(0,1),(2,4)]`
Find X, if AX = B, where A = `[(1,2,3),(-1,1,2),(1,2,4)]` and B = `[(1),(2),(3)]`
Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3) "is" "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0`
Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3) "is" "a"_11"A"_11 + "a"_12"A"_12 + "a"_13"A"_13 = |"A"|`
If A = `[(1,0,1),(0,2,3),(1,2,1)]` and B = `[(1,2,3),(1,1,5),(2,4,7)]`, then find a matrix X such that XA = B.
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]` , adj A = `[(4,"a"),(-3,"b")]`, then the values of a and b are
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(2,1)]` and A(adj A) = k I, then the value of k is
If A = `[(2, -1, 1),(-2, 3, -2),(-4, 4, -3)]` the find A2
If A = `[(-2, 4),(-1, 2)]` then find A2
Find A−1 using column transformations:
A = `[(5, 3),(3, -2)]`
Find the inverse of A = `[(2, -3, 3),(2, 2, 3),(3, -2, 2)]` by using elementary row transformations.
If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.