Advertisements
Advertisements
प्रश्न
Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3) "is" "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0`
उत्तर
A = `["a"_"ij"]_(3xx3) = [("a"_11,"a"_12,"a"_13),("a"_21,"a"_22,"a"_23),("a"_31,"a"_32,"a"_33)]`
`"A"_21 = (-1)^(2+1)"M"_21 = - |("a"_12,"a"_13),("a"_32,"a"_33)|`
`= - ("a"_12"a"_33 - "a"_13"a"_32)`
`= - "a"_12"a"_33 + "a"_13"a"_32`
`"A"_22 = (-1)^(2+2)"M"_22 = - |("a"_11,"a"_13),("a"_31,"a"_33)|`
= a11a33 - a13a31
`"A"_23 = (-1)^(2+3)"M"_23 = - |("a"_11,"a"_12),("a"_31,"a"_32)|`
= - (a11a32 - a12a31)
= - a11a32 + a12a31
∴ `"a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23`
`= "a"_11 (- "a"_12"a"_33 + "a"_13"a"_32) + "a"_12("a"_11"a"_33 - "a"_13"a"_31) + "a"_13(- "a"_11"a"_32 + "a"_12"a"_31)`
`= - "a"_11"a"_12"a"_33 + "a"_11"a"_13"a"_32 + "a"_11"a"_12"a"_33 - "a"_12"a"_13"a"_31 - "a"_11"a"_13"a"_32 + "a"_12"a"_13"a"_31`
= 0
APPEARS IN
संबंधित प्रश्न
Apply the given elementary transformation of the following matrix.
A = `[(1,0),(-1,3)]`, R1↔ R2
Apply the given elementary transformation of the following matrix.
A = `[(1,2,-1),(0,1,3)]`, 2C2
B = `[(1,0,2),(2,4,5)]`, −3R1
Find the addition of the two new matrices.
Apply the given elementary transformation of the following matrix.
A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2
Apply the given elementary transformation of the following matrix.
A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2
and A = `[(1,-1,3),(2,1,0),(3,3,1)]`, C3 + 2C2 and then 3R3
What do you conclude?
Apply the given elementary transformation of the following matrix.
Use suitable transformation on `[(1,2),(3,4)]` to convert it into an upper triangular matrix.
Apply the given elementary transformation of the following matrix.
Transform `[(1,-1,2),(2,1,3),(3,2,4)]` into an upper triangular matrix by suitable column transformations.
Check whether the following matrix is invertible or not:
`[(1,0),(0,1)]`
Check whether the following matrix is invertible or not:
`((3,4,3),(1,1,0),(1,4,5))`
Check whether the following matrix is invertible or not:
`((1,2,3),(3,4,5),(4,6,8))`
If A = `[(1,2),(3,4)]` and X is a 2 × 2 matrix such that AX = I, find X.
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.
Find the matrix X such that AX = B, where A = `[(1,2),(-1,3)]` and B = `[(0,1),(2,4)]`
Find X, if AX = B, where A = `[(1,2,3),(-1,1,2),(1,2,4)]` and B = `[(1),(2),(3)]`
Find A-1 by the adjoint method and by elementary transformations, if A = `[(1,2,3),(-1,1,2),(1,2,4)]`
Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by using elementary row transformations.
Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3) "is" "a"_11"A"_11 + "a"_12"A"_12 + "a"_13"A"_13 = |"A"|`
Find the inverse of the following matrix (if they exist).
`[(1,3,-2),(-3,0,-5),(2,5,0)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(2,1)]` and A(adj A) = k I, then the value of k is
The element of second row and third column in the inverse of `[(1, 2, 1),(2, 1, 0),(-1, 0, 1)]` is ______.
If A = `[(2, -1, 1),(-2, 3, -2),(-4, 4, -3)]` the find A2
If A = `[(-2, 4),(-1, 2)]` then find A2
Find A−1 using column transformations:
A = `[(5, 3),(3, -2)]`
Find A−1 using column transformations:
A = `[(2, -3),(-1, 2)]`
If A = `[(1, 2, -1),(3, -2, 5)]`, apply R1 ↔ R2 and then C1 → C1 + 2C3 on A
Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`
Find the inverse of A = `[(2, -3, 3),(2, 2, 3),(3, -2, 2)]` by using elementary row transformations.
If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1
If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.
If A = `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]`, find A–1