हिंदी

Apply the given elementary transformation of the following matrix. A = [1-13210331], 3R3 and then C3 + 2C2 and A = [1-13210331], C3 + 2C2 and then 3R3What do you conclude? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Apply the given elementary transformation of the following matrix.

A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2

and A = `[(1,-1,3),(2,1,0),(3,3,1)]`, C3 + 2C2 and then 3R3
What do you conclude?

योग

उत्तर

A = `[(1,-1,3),(2,1,0),(3,3,1)]`

By 3R3, we get,

A ∼ `[(1,-1,3),(2,1,0),(9,9,3)]`

By C3 + 2C2, we get,

A ∼ `[(1,-1,3+2(-1)),(2,1,+2(1)),(9,9,+2(9))]`

∴ A ∼ `[(1,-1,1),(2,1,2),(9,9,21)]` ..............(i)

And

A = `[(1,-1,3),(2,1,0),(3,3,1)]`

By C3 + 2C2, we get,

A ∼ `[(1,-1,3+2(-1)),(2,1,0+2(1)),(3,3,+1+2(3))]`

∴ A ∼ `[(1,-1,1),(2,1,2),(3,3,7)]`

∴ A ∼ `[(1,-1,1),(2,1,2),(3,3,7)]`

By 3R3, we get

A ∼ `[(1,-1,1),(2,1,2),(9,9,21)]` ......(ii)

We conclude from (i) and (ii)  the matrix remains the same by interchanging the order of the elementary transformations. Hence, the transformations are commutative.

shaalaa.com
Elementry Transformations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Matrics - Exercise 2.1 [पृष्ठ ३९]

संबंधित प्रश्न

Apply the given elementary transformation of the following matrix.

A = `[(1,0),(-1,3)]`, R1↔ R2


Apply the given elementary transformation of the following matrix.

A = `[(5,4),(1,3)]`, C1↔ C2; B = `[(3,1),(4,5)]` R1↔ R2.
What do you observe?


Apply the given elementary transformation of the following matrix.

A = `[(1,2,-1),(0,1,3)]`, 2C2

B = `[(1,0,2),(2,4,5)]`, −3R1

Find the addition of the two new matrices.


Apply the given elementary transformation of the following matrix.

Use suitable transformation on `[(1,2),(3,4)]` to convert it into an upper triangular matrix.


If A = `((1,0,0),(2,1,0),(3,3,1))`, then reduce it to I3 by using column transformations.


Check whether the following matrix is invertible or not:

`[(1,0),(0,1)]`


Check whether the following matrix is invertible or not:

`((1,1),(1,1))`


Check whether the following matrix is invertible or not:

`((1,2),(3,3))`


Check whether the following matrix is invertible or not:

`((2,3),(10,15))`


Check whether the following matrix is invertible or not:

`((3,4,3),(1,1,0),(1,4,5))`


If A = `[(1,2),(3,4)]` and X is a 2 × 2 matrix such that AX = I, find X.


Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, find AB and (AB)-1 . Verify that (AB)-1 = B-1.A-1.


If A = `[(4,5),(2,1)]`, show that `"A"^-1 = 1/6("A" - 5"I")`.


Find X, if AX = B, where A = `[(1,2,3),(-1,1,2),(1,2,4)]` and B = `[(1),(2),(3)]`


If A = `[(1,1),(1,2)], "B" = [(4,1),(3,1)]` and C = `[(24,7),(31,9)]`, then find the matrix X such that AXB = C


Find A-1 by the adjoint method and by elementary transformations, if A = `[(1,2,3),(-1,1,2),(1,2,4)]`


Find the inverse of A = `[(1,0,1),(0,2,3),(1,2,1)]` by using elementary column transformations.


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by using elementary row transformations.


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0` 


If A = `[(1,0,1),(0,2,3),(1,2,1)]` and B = `[(1,2,3),(1,1,5),(2,4,7)]`, then find a matrix X such that XA = B.


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]` , adj A = `[(4,"a"),(-3,"b")]`, then the values of a and b are


Choose the correct answer from the given alternatives in the following question:

The inverse of `[(0,1),(1,0)]` is


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(2,1)]` and A(adj A) = k I, then the value of k is


If A = `[(2, -1, 1),(-2, 3, -2),(-4, 4, -3)]` the find A2 


Find the matrix X such that AX = I where A = `[(6, 17),(1, 3)]`


Find A−1 using column transformations:

A = `[(2, -3),(-1, 2)]`


Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`


Find the inverse of A = `[(2, -3, 3),(2, 2, 3),(3, -2, 2)]` by using elementary row transformations.


If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.


Find the matrix X such that AX = B, where A = `[(2, 1),(-1, 3)]`, B = `[(12, -1),(1, 4)]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×