Advertisements
Advertisements
प्रश्न
Find the matrix X such that AX = I where A = `[(6, 17),(1, 3)]`
उत्तर
Given, AX = I
∴ `[(6, 17),(1, 3)]` X = `[(1, 0),(0, 1)]`
Applying R1 ↔ R2, we get
`[(1, 3),(6, 17)]` X = `[(0, 1),(1, 0)]`
Applying R2 → R2 – 6R1, we get
`[(1, 3),(0, -1)]` X = `[(0, 1),(1, -6)]`
Applying R1 → R1 + 3R2, we get
`[(1, 0),(0, -1)]` X = `[(3, -17),(1, -6)]`
Applying R2 → (–1) R2, we get
`[(1, 0),(0, 1)]` X = `[(3, -17),(-1, 6)]`
∴ X = `[(3, -17),(-1, 6)]`
संबंधित प्रश्न
Apply the given elementary transformation of the following matrix.
A = `[(1,0),(-1,3)]`, R1↔ R2
Apply the given elementary transformation of the following matrix.
A = `[(1,2,-1),(0,1,3)]`, 2C2
B = `[(1,0,2),(2,4,5)]`, −3R1
Find the addition of the two new matrices.
Apply the given elementary transformation of the following matrix.
A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2
Apply the given elementary transformation of the following matrix.
A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2
and A = `[(1,-1,3),(2,1,0),(3,3,1)]`, C3 + 2C2 and then 3R3
What do you conclude?
Apply the given elementary transformation of the following matrix.
Use suitable transformation on `[(1,2),(3,4)]` to convert it into an upper triangular matrix.
Apply the given elementary transformation of the following matrix.
Convert `[(1,-1),(2,3)]` into an identity matrix by suitable row transformations.
Apply the given elementary transformation of the following matrix.
Transform `[(1,-1,2),(2,1,3),(3,2,4)]` into an upper triangular matrix by suitable column transformations.
The total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ 35,000. The shopkeeper wants a profit of ₹ 1000 per T.V. set and ₹ 500 per V.C.R. He sells 2 T.V. sets and 1 V.C.R. and gets the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. set and a V.C.R.
If A = `[(2,1,3),(1,0,1),(1,1,1)]`, then reduce it to I3 by using row transformations.
Check whether the following matrix is invertible or not:
`[(1,0),(0,1)]`
Check whether the following matrix is invertible or not:
`((1,1),(1,1))`
Check whether the following matrix is invertible or not:
`((1,2),(3,3))`
Check whether the following matrix is invertible or not:
`[(cos theta, sin theta),(-sin theta, cos theta)]`
Check whether the following matrix is invertible or not:
`((3,4,3),(1,1,0),(1,4,5))`
Check whether the following matrix is invertible or not:
`((1,2,3),(2,-1,3),(1,2,3))`
Check whether the following matrix is invertible or not:
`((1,2,3),(3,4,5),(4,6,8))`
If A = `[(1,2),(3,4)]` and X is a 2 × 2 matrix such that AX = I, find X.
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary row transformations.
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.
Find X, if AX = B, where A = `[(1,2,3),(-1,1,2),(1,2,4)]` and B = `[(1),(2),(3)]`
Find the inverse of A = `[(1,0,1),(0,2,3),(1,2,1)]` by using elementary column transformations.
Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3) "is" "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0`
If A = `[(1,0,1),(0,2,3),(1,2,1)]` and B = `[(1,2,3),(1,1,5),(2,4,7)]`, then find a matrix X such that XA = B.
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]` , adj A = `[(4,"a"),(-3,"b")]`, then the values of a and b are
Choose the correct answer from the given alternatives in the following question:
The inverse of `[(0,1),(1,0)]` is
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(2,1)]` and A(adj A) = k I, then the value of k is
The element of second row and third column in the inverse of `[(1, 2, 1),(2, 1, 0),(-1, 0, 1)]` is ______.
If A = `[(2, -1, 1),(-2, 3, -2),(-4, 4, -3)]` the find A2
If A = `[(-2, 4),(-1, 2)]` then find A2
If A = `[(1, 2, -1),(3, -2, 5)]`, apply R1 ↔ R2 and then C1 → C1 + 2C3 on A
Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`
Find the inverse of A = `[(2, -3, 3),(2, 2, 3),(3, -2, 2)]` by using elementary row transformations.
If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1
If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.
Find the matrix X such that AX = B, where A = `[(2, 1),(-1, 3)]`, B = `[(12, -1),(1, 4)]`.