हिंदी

The element of second row and third column in the inverse of [121210-101] is ______. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The element of second row and third column in the inverse of `[(1, 2, 1),(2, 1, 0),(-1, 0, 1)]` is ______.

विकल्प

  • −2

  • −1

  • 1

  • 2

MCQ
रिक्त स्थान भरें

उत्तर

The element of second row and third column in the inverse of `[(1, 2, 1),(2, 1, 0),(-1, 0, 1)]` is −1.

shaalaa.com
Elementry Transformations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.2: Matrics - MCQ

संबंधित प्रश्न

Apply the given elementary transformation of the following matrix.

A = `[(1,0),(-1,3)]`, R1↔ R2


Apply the given elementary transformation of the following matrix.

B = `[(1, -1, 3),(2, 5, 4)]`, R1→ R1 – R2


Apply the given elementary transformation of the following matrix.

A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2


Apply the given elementary transformation of the following matrix.

A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2

and A = `[(1,-1,3),(2,1,0),(3,3,1)]`, C3 + 2C2 and then 3R3
What do you conclude?


Apply the given elementary transformation of the following matrix.

Use suitable transformation on `[(1,2),(3,4)]` to convert it into an upper triangular matrix.


The total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ 35,000. The shopkeeper wants a profit of ₹ 1000 per T.V. set and ₹ 500 per V.C.R. He sells 2 T.V. sets and 1 V.C.R. and gets the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. set and a V.C.R.


If A = `((1,0,0),(2,1,0),(3,3,1))`, then reduce it to I3 by using column transformations.


If A = `[(2,1,3),(1,0,1),(1,1,1)]`, then reduce it to I3 by using row transformations.


Check whether the following matrix is invertible or not:

`((1,2),(3,3))`


Check whether the following matrix is invertible or not:

`[(cos theta, sin theta),(-sin theta, cos theta)]`


Check whether the following matrix is invertible or not:

`(("sec" theta , "tan" theta),("tan" theta,"sec" theta))`


Check whether the following matrix is invertible or not:

`((3,4,3),(1,1,0),(1,4,5))`


Check whether the following matrix is invertible or not:

`((1,2,3),(2,-1,3),(1,2,3))`


If A = `[("x",0,0),(0,"y",0),(0,0,"z")]` is a non-singular matrix, then find A−1 by using elementary row transformations. Hence, find the inverse of `[(2,0,0),(0,1,0),(0,0,-1)]`


Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, find AB and (AB)-1 . Verify that (AB)-1 = B-1.A-1.


If A = `[(4,5),(2,1)]`, show that `"A"^-1 = 1/6("A" - 5"I")`.


Find X, if AX = B, where A = `[(1,2,3),(-1,1,2),(1,2,4)]` and B = `[(1),(2),(3)]`


If A = `[(1,1),(1,2)], "B" = [(4,1),(3,1)]` and C = `[(24,7),(31,9)]`, then find the matrix X such that AXB = C


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by using elementary row transformations.


If A = `[(1,0,1),(0,2,3),(1,2,1)]` and B = `[(1,2,3),(1,1,5),(2,4,7)]`, then find a matrix X such that XA = B.


Find the inverse of the following matrix (if they exist).

`[(1,3,-2),(-3,0,-5),(2,5,0)]`


If A = `[(-2, 4),(-1, 2)]` then find A2 


Find the matrix X such that AX = I where A = `[(6, 17),(1, 3)]`


If A = `[(1, 2, -1),(3, -2, 5)]`, apply R1 ↔ R2 and then C1 → C1 + 2C3 on A


Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`


If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×