Advertisements
Advertisements
प्रश्न
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.
उत्तर
|A| = `|("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)|`
= cos θ(cos θ - 0) + sin θ(sin θ - 0) + 0
= cos2θ + sin2θ = 1 ≠ 0
∴ A-1 exists.
Consider A-1A = I
∴ `"A"^-1 [("cos"theta, -"sin"theta,0),("sin"theta,"cos"theta,0),(0,0,1)] = [(1,0,0),(0,1,0),(0,0,1)]`
By (cos θ) × C1, we get,
`"A"^-1 = [("cos"^2theta,-"sin"theta,0),("sin"theta"cos"theta,"cos"theta,0),(0,0,1)] = [("cos"theta,0,0),(0,1,0),(0,0,1)]`
By C1 - sin θ × C2, we get,
`"A"^-1 [(1,-"sin"theta,0),(0,"cos"theta,0),(0,0,1)] = [("cos"theta,0,0),(-"sin"theta,1,0),(0,0,1)]`
By C2 + sin θ × C1, we get,
`"A"^-1 [(1,0,0),(0,"cos"theta,0),(0,0,1)] = [("cos"theta,"sin"theta"cos"theta,0),(-"sin"theta,"cos"^2theta,0),(0,0,1)]`
By `(1/("cos"theta))"C"_2`, we get,
`"A"^-1[(1,0,0),(0,1,0),(0,0,1)] = [("cos"theta,"sin"theta,0),(-"sin"theta,"cos"theta,0),(0,0,1)]`
APPEARS IN
संबंधित प्रश्न
Apply the given elementary transformation of the following matrix.
A = `[(1,0),(-1,3)]`, R1↔ R2
Apply the given elementary transformation of the following matrix.
A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2
Apply the given elementary transformation of the following matrix.
Use suitable transformation on `[(1,2),(3,4)]` to convert it into an upper triangular matrix.
Apply the given elementary transformation of the following matrix.
Convert `[(1,-1),(2,3)]` into an identity matrix by suitable row transformations.
Apply the given elementary transformation of the following matrix.
Transform `[(1,-1,2),(2,1,3),(3,2,4)]` into an upper triangular matrix by suitable column transformations.
Check whether the following matrix is invertible or not:
`[(1,0),(0,1)]`
Check whether the following matrix is invertible or not:
`((1,1),(1,1))`
Check whether the following matrix is invertible or not:
`((1,2),(3,3))`
Check whether the following matrix is invertible or not:
`((3,4,3),(1,1,0),(1,4,5))`
If A = `[("x",0,0),(0,"y",0),(0,0,"z")]` is a non-singular matrix, then find A−1 by using elementary row transformations. Hence, find the inverse of `[(2,0,0),(0,1,0),(0,0,-1)]`
If A = `[(1,2),(3,4)]` and X is a 2 × 2 matrix such that AX = I, find X.
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary row transformations.
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, find AB and (AB)-1 . Verify that (AB)-1 = B-1.A-1.
If A = `[(4,5),(2,1)]`, show that `"A"^-1 = 1/6("A" - 5"I")`.
Find the matrix X such that AX = B, where A = `[(1,2),(-1,3)]` and B = `[(0,1),(2,4)]`
Find X, if AX = B, where A = `[(1,2,3),(-1,1,2),(1,2,4)]` and B = `[(1),(2),(3)]`
If A = `[(1,1),(1,2)], "B" = [(4,1),(3,1)]` and C = `[(24,7),(31,9)]`, then find the matrix X such that AXB = C
Find A-1 by the adjoint method and by elementary transformations, if A = `[(1,2,3),(-1,1,2),(1,2,4)]`
Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3) "is" "a"_11"A"_11 + "a"_12"A"_12 + "a"_13"A"_13 = |"A"|`
If A = `[(1,0,1),(0,2,3),(1,2,1)]` and B = `[(1,2,3),(1,1,5),(2,4,7)]`, then find a matrix X such that XA = B.
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]` , adj A = `[(4,"a"),(-3,"b")]`, then the values of a and b are
The element of second row and third column in the inverse of `[(1, 2, 1),(2, 1, 0),(-1, 0, 1)]` is ______.
If A = `[(-2, 4),(-1, 2)]` then find A2
Find the matrix X such that AX = I where A = `[(6, 17),(1, 3)]`
Find A−1 using column transformations:
A = `[(5, 3),(3, -2)]`
If A = `[(1, 2, -1),(3, -2, 5)]`, apply R1 ↔ R2 and then C1 → C1 + 2C3 on A
If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1
If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.
Find the matrix X such that AX = B, where A = `[(2, 1),(-1, 3)]`, B = `[(12, -1),(1, 4)]`.