मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the inverse of A = cossinsincos[cosθ-sinθ0sinθcosθ0001] by elementary column transformations. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.

बेरीज

उत्तर

|A| = `|("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)|`

= cos θ(cos θ - 0) + sin θ(sin θ - 0) + 0

= cos2θ + sin2θ = 1 ≠ 0

∴ A-1 exists.

Consider A-1A = I

∴ `"A"^-1 [("cos"theta, -"sin"theta,0),("sin"theta,"cos"theta,0),(0,0,1)] = [(1,0,0),(0,1,0),(0,0,1)]`

By (cos θ) × C1, we get, 

`"A"^-1 = [("cos"^2theta,-"sin"theta,0),("sin"theta"cos"theta,"cos"theta,0),(0,0,1)] = [("cos"theta,0,0),(0,1,0),(0,0,1)]`

By C1 - sin θ × C2, we get,

`"A"^-1 [(1,-"sin"theta,0),(0,"cos"theta,0),(0,0,1)] = [("cos"theta,0,0),(-"sin"theta,1,0),(0,0,1)]`

By C2 + sin θ × C1, we get,

`"A"^-1 [(1,0,0),(0,"cos"theta,0),(0,0,1)] = [("cos"theta,"sin"theta"cos"theta,0),(-"sin"theta,"cos"^2theta,0),(0,0,1)]`

By `(1/("cos"theta))"C"_2`, we get,

`"A"^-1[(1,0,0),(0,1,0),(0,0,1)] = [("cos"theta,"sin"theta,0),(-"sin"theta,"cos"theta,0),(0,0,1)]`

shaalaa.com
Elementry Transformations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrics - Miscellaneous exercise 2 (A) [पृष्ठ ५३]

APPEARS IN

संबंधित प्रश्‍न

Apply the given elementary transformation of the following matrix.

B = `[(1, -1, 3),(2, 5, 4)]`, R1→ R1 – R2


Apply the given elementary transformation of the following matrix.

A = `[(5,4),(1,3)]`, C1↔ C2; B = `[(3,1),(4,5)]` R1↔ R2.
What do you observe?


Apply the given elementary transformation of the following matrix.

A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2


Apply the given elementary transformation of the following matrix.

A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2

and A = `[(1,-1,3),(2,1,0),(3,3,1)]`, C3 + 2C2 and then 3R3
What do you conclude?


Apply the given elementary transformation of the following matrix.

Convert `[(1,-1),(2,3)]` into an identity matrix by suitable row transformations.


The total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ 35,000. The shopkeeper wants a profit of ₹ 1000 per T.V. set and ₹ 500 per V.C.R. He sells 2 T.V. sets and 1 V.C.R. and gets the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. set and a V.C.R.


If A = `((1,0,0),(2,1,0),(3,3,1))`, then reduce it to I3 by using column transformations.


If A = `[(2,1,3),(1,0,1),(1,1,1)]`, then reduce it to I3 by using row transformations.


Check whether the following matrix is invertible or not:

`[(1,0),(0,1)]`


Check whether the following matrix is invertible or not:

`((1,2),(3,3))`


Check whether the following matrix is invertible or not:

`((2,3),(10,15))`


Check whether the following matrix is invertible or not:

`((3,4,3),(1,1,0),(1,4,5))`


Check whether the following matrix is invertible or not:

`((1,2,3),(2,-1,3),(1,2,3))`


Check whether the following matrix is invertible or not:

`((1,2,3),(3,4,5),(4,6,8))`


If A = `[("x",0,0),(0,"y",0),(0,0,"z")]` is a non-singular matrix, then find A−1 by using elementary row transformations. Hence, find the inverse of `[(2,0,0),(0,1,0),(0,0,-1)]`


Find the matrix X such that AX = B, where A = `[(1,2),(-1,3)]` and B = `[(0,1),(2,4)]`


Find X, if AX = B, where A = `[(1,2,3),(-1,1,2),(1,2,4)]` and B = `[(1),(2),(3)]`


Find A-1 by the adjoint method and by elementary transformations, if A = `[(1,2,3),(-1,1,2),(1,2,4)]`


Find the inverse of A = `[(1,0,1),(0,2,3),(1,2,1)]` by using elementary column transformations.


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_11 + "a"_12"A"_12 + "a"_13"A"_13 = |"A"|` 


If A = `[(1,0,1),(0,2,3),(1,2,1)]` and B = `[(1,2,3),(1,1,5),(2,4,7)]`, then find a matrix X such that XA = B.


Find the matrix X such that AX = I where A = `[(6, 17),(1, 3)]`


Find A−1 using column transformations:

A = `[(5, 3),(3, -2)]`


Find A−1 using column transformations:

A = `[(2, -3),(-1, 2)]`


Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`


Find the inverse of A = `[(2, -3, 3),(2, 2, 3),(3, -2, 2)]` by using elementary row transformations.


If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1 


If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.


Find the matrix X such that AX = B, where A = `[(2, 1),(-1, 3)]`, B = `[(12, -1),(1, 4)]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×