मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Apply the given elementary transformation of the following matrix. A = [1-13210331], 3R3 and then C3 + 2C2 and A = [1-13210331], C3 + 2C2 and then 3R3What do you conclude? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Apply the given elementary transformation of the following matrix.

A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2

and A = `[(1,-1,3),(2,1,0),(3,3,1)]`, C3 + 2C2 and then 3R3
What do you conclude?

बेरीज

उत्तर

A = `[(1,-1,3),(2,1,0),(3,3,1)]`

By 3R3, we get,

A ∼ `[(1,-1,3),(2,1,0),(9,9,3)]`

By C3 + 2C2, we get,

A ∼ `[(1,-1,3+2(-1)),(2,1,+2(1)),(9,9,+2(9))]`

∴ A ∼ `[(1,-1,1),(2,1,2),(9,9,21)]` ..............(i)

And

A = `[(1,-1,3),(2,1,0),(3,3,1)]`

By C3 + 2C2, we get,

A ∼ `[(1,-1,3+2(-1)),(2,1,0+2(1)),(3,3,+1+2(3))]`

∴ A ∼ `[(1,-1,1),(2,1,2),(3,3,7)]`

∴ A ∼ `[(1,-1,1),(2,1,2),(3,3,7)]`

By 3R3, we get

A ∼ `[(1,-1,1),(2,1,2),(9,9,21)]` ......(ii)

We conclude from (i) and (ii)  the matrix remains the same by interchanging the order of the elementary transformations. Hence, the transformations are commutative.

shaalaa.com
Elementry Transformations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrics - Exercise 2.1 [पृष्ठ ३९]

संबंधित प्रश्‍न

Apply the given elementary transformation of the following matrix.

A = `[(1,0),(-1,3)]`, R1↔ R2


Apply the given elementary transformation of the following matrix.

A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2


Apply the given elementary transformation of the following matrix.

Transform `[(1,-1,2),(2,1,3),(3,2,4)]` into an upper triangular matrix by suitable column transformations.


The total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ 35,000. The shopkeeper wants a profit of ₹ 1000 per T.V. set and ₹ 500 per V.C.R. He sells 2 T.V. sets and 1 V.C.R. and gets the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. set and a V.C.R.


If A = `((1,0,0),(2,1,0),(3,3,1))`, then reduce it to I3 by using column transformations.


If A = `[(2,1,3),(1,0,1),(1,1,1)]`, then reduce it to I3 by using row transformations.


Check whether the following matrix is invertible or not:

`((1,1),(1,1))`


Check whether the following matrix is invertible or not:

`((1,2),(3,3))`


Check whether the following matrix is invertible or not:

`((1,2,3),(2,-1,3),(1,2,3))`


Check whether the following matrix is invertible or not:

`((1,2,3),(3,4,5),(4,6,8))`


If A = `[("x",0,0),(0,"y",0),(0,0,"z")]` is a non-singular matrix, then find A−1 by using elementary row transformations. Hence, find the inverse of `[(2,0,0),(0,1,0),(0,0,-1)]`


Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary row transformations.


Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, find AB and (AB)-1 . Verify that (AB)-1 = B-1.A-1.


If A = `[(4,5),(2,1)]`, show that `"A"^-1 = 1/6("A" - 5"I")`.


Find the matrix X such that AX = B, where A = `[(1,2),(-1,3)]` and B = `[(0,1),(2,4)]`


Find X, if AX = B, where A = `[(1,2,3),(-1,1,2),(1,2,4)]` and B = `[(1),(2),(3)]`


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0` 


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_11 + "a"_12"A"_12 + "a"_13"A"_13 = |"A"|` 


If A = `[(1,0,1),(0,2,3),(1,2,1)]` and B = `[(1,2,3),(1,1,5),(2,4,7)]`, then find a matrix X such that XA = B.


Choose the correct answer from the given alternatives in the following question:

The inverse of `[(0,1),(1,0)]` is


The element of second row and third column in the inverse of `[(1, 2, 1),(2, 1, 0),(-1, 0, 1)]` is ______.


If A = `[(-2, 4),(-1, 2)]` then find A2 


Find the matrix X such that AX = I where A = `[(6, 17),(1, 3)]`


Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`


Find the inverse of A = `[(2, -3, 3),(2, 2, 3),(3, -2, 2)]` by using elementary row transformations.


If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×