मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the inverse of A = [2-332233-22] by using elementary row transformations. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the inverse of A = `[(2, -3, 3),(2, 2, 3),(3, -2, 2)]` by using elementary row transformations.

बेरीज

उत्तर

Consider, AA−1 = I

∴ `[(2, -3, 3),(2, 2, 3),(3, -2, 2)]` A−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

Applying R2 → R2 – R1 and R3 → 2R3 – 3R1, we get

`[(2, -3, 3),(0, 5, 0),(0, 5, -5)]` A−1 = `[(1, 0, 0),(-1, 1, 0),(-3, 0, 2)]`

Applying R3 → R3 – R2, we get

`[(2, -3, 3),(0, 5, 0),(0, 0, -5)]` A−1 = `[(1, 0, 0),(-1, 1, 0),(-2, -1, 2)]`

Applying `R_2 → (1/5) R_2` and `R_3 → (1/5) R_3`, we get

`[(2, -3, 3),(0, 1, 0),(0, 0, 1)]` A−1 = `[(1, 0, 0),((-1)/5, 1/5, 0),(2/5, 1/5, (-2)/5)]`

Applying R1 → R1 + 3R2, we get

`[(2, 0, 3),(0, 1, 0),(0, 0, 1)]` A−1 = `[(2/5, 3/5, 0),((-1)/5, 1/5, 0),(2/5, 1/5, (-2)/5)]`

Applying R1 → R1 – 3R3, we get

`[(2, 0, 0),(0, 1, 0),(0, 0, 1)]` A−1 = `1/5[(-4, 0, 6),(-1, 1, 0),(2, 1, -2)]`

Applying `R_1 → (1/2) R_1`, we get

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` A−1 = `1/5[(-2, 0, 3),(-1, 1, 0),(2, 1, -2)]`

∴ A−1 = `1/5[(-2, 0, 3),(-1, 1, 0),(2, 1, -2)]`

shaalaa.com
Elementry Transformations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.2: Matrics - Long Answers III

संबंधित प्रश्‍न

Apply the given elementary transformation of the following matrix.

A = `[(1,2,-1),(0,1,3)]`, 2C2

B = `[(1,0,2),(2,4,5)]`, −3R1

Find the addition of the two new matrices.


Apply the given elementary transformation of the following matrix.

A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2

and A = `[(1,-1,3),(2,1,0),(3,3,1)]`, C3 + 2C2 and then 3R3
What do you conclude?


Apply the given elementary transformation of the following matrix.

Convert `[(1,-1),(2,3)]` into an identity matrix by suitable row transformations.


The total cost of 3 T.V. sets and 2 V.C.R.’s is ₹ 35,000. The shopkeeper wants a profit of ₹ 1000 per T.V. set and ₹ 500 per V.C.R. He sells 2 T.V. sets and 1 V.C.R. and gets the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. set and a V.C.R.


If A = `((1,0,0),(2,1,0),(3,3,1))`, then reduce it to I3 by using column transformations.


If A = `[(2,1,3),(1,0,1),(1,1,1)]`, then reduce it to I3 by using row transformations.


Check whether the following matrix is invertible or not:

`[(1,0),(0,1)]`


Check whether the following matrix is invertible or not:

`[(cos theta, sin theta),(-sin theta, cos theta)]`


Check whether the following matrix is invertible or not:

`(("sec" theta , "tan" theta),("tan" theta,"sec" theta))`


Check whether the following matrix is invertible or not:

`((3,4,3),(1,1,0),(1,4,5))`


Check whether the following matrix is invertible or not:

`((1,2,3),(2,-1,3),(1,2,3))`


If A = `[(1,2),(3,4)]` and X is a 2 × 2 matrix such that AX = I, find X.


Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary row transformations.


Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.


If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, find AB and (AB)-1 . Verify that (AB)-1 = B-1.A-1.


If A = `[(4,5),(2,1)]`, show that `"A"^-1 = 1/6("A" - 5"I")`.


Find X, if AX = B, where A = `[(1,2,3),(-1,1,2),(1,2,4)]` and B = `[(1),(2),(3)]`


Find A-1 by the adjoint method and by elementary transformations, if A = `[(1,2,3),(-1,1,2),(1,2,4)]`


Find the inverse of A = `[(1,0,1),(0,2,3),(1,2,1)]` by using elementary column transformations.


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by using elementary row transformations.


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0` 


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_11 + "a"_12"A"_12 + "a"_13"A"_13 = |"A"|` 


Find the inverse of the following matrix (if they exist).

`[(1,3,-2),(-3,0,-5),(2,5,0)]`


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]` , adj A = `[(4,"a"),(-3,"b")]`, then the values of a and b are


Choose the correct answer from the given alternatives in the following question:

The inverse of `[(0,1),(1,0)]` is


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(2,1)]` and A(adj A) = k I, then the value of k is


The element of second row and third column in the inverse of `[(1, 2, 1),(2, 1, 0),(-1, 0, 1)]` is ______.


If A = `[(-2, 4),(-1, 2)]` then find A2 


Find the matrix X such that AX = I where A = `[(6, 17),(1, 3)]`


Find A−1 using column transformations:

A = `[(5, 3),(3, -2)]`


If A = `[(1, 2, -1),(3, -2, 5)]`, apply R1 ↔ R2 and then C1 → C1 + 2C3 on A


Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`


If A = `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]`, find A–1


Find the matrix X such that AX = B, where A = `[(2, 1),(-1, 3)]`, B = `[(12, -1),(1, 4)]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×