Advertisements
Advertisements
प्रश्न
If A = `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]`, find A–1
बेरीज
उत्तर
A = `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]`
∴ |A| = `|(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)|`
= cos θ (cos θ) + sin θ (sin θ)
= cos2θ + sin2θ
= 1 ≠ 0
`\implies` A–1 exists.
We write: AA–1 = I
∴ `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]A^-1 = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
`R_1 → R_1 cos θ + R_2 sin θ`
`[(1, 0, 0),(sinθ, cosθ, 0),(0, 0, 1)]A^-1 = [(cosθ, sinθ, 0),(0, 1, 0),(0, 0, 1)]`
`R_2 → R_2 - (sinθ)R_1`
`[(1, 0, 0),(0, cosθ, 0),(0, 0, 1)]A^-1 = [(cosθ, sinθ, 0),(-sinθcosθ, 1 - sin^2θ, 0),(0, 0, 1)]`
`R_2 → 1/cosθ R_2`
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]A^-1 = [(cosθ, sinθ, 0),(-sinθ, cosθ, 0),(0, 0, 1)]`
∴ A–1 = `[(cosθ, sinθ, 0),(-sinθ, cosθ, 0),(0, 0, 1)]`
shaalaa.com
Elementry Transformations
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?