English

If A = θθθθ[cosθ-sinθ0sinθcosθ0001], find A–1 -

Advertisements
Advertisements

Question

If A = `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]`, find A–1

Sum

Solution

A = `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]`

∴ |A| = `|(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)|`

= cos θ (cos θ) + sin θ (sin θ)

= cos2θ + sin2θ

= 1 ≠ 0

`\implies` A–1 exists.

We write: AA–1 = I

∴ `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]A^-1 = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

`R_1 → R_1 cos θ + R_2 sin θ`

`[(1, 0, 0),(sinθ, cosθ, 0),(0, 0, 1)]A^-1 = [(cosθ, sinθ, 0),(0, 1, 0),(0, 0, 1)]`

`R_2 → R_2 - (sinθ)R_1`

`[(1, 0, 0),(0, cosθ, 0),(0, 0, 1)]A^-1 = [(cosθ, sinθ, 0),(-sinθcosθ, 1 - sin^2θ, 0),(0, 0, 1)]`

`R_2 → 1/cosθ R_2`

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]A^-1 = [(cosθ, sinθ, 0),(-sinθ, cosθ, 0),(0, 0, 1)]`

∴ A–1 = `[(cosθ, sinθ, 0),(-sinθ, cosθ, 0),(0, 0, 1)]`

shaalaa.com
Elementry Transformations
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×