मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If A = [2312], B = [1031], find AB and (AB)-1 . Verify that (AB)-1 = B-1.A-1. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, find AB and (AB)-1 . Verify that (AB)-1 = B-1.A-1.

व्युत्पत्ती
बेरीज

उत्तर

AB = `[(2,3),(1,2)] [(1,0),(3,1)]`

`= [(2+9,0+3),(1+6,0+2)] = [(11,3),(7,2)]`

∴ |AB| = `|(11,3),(7,2)| = 22 - 21 = 1 ne 0`

∴ (AB)-1 exists.

Now, (AB)(AB)-1 = I

∴ `[(11,3),(7,2)]("AB")^-1 = [(1,0),(0,1)]`

By 2R1, we get,

`[(22,6),(7,2)] ("AB")^-1 = [(2,0),(0,1)]`

By R1 - 3R2, we get,

`[(1,0),(7,2)] ("AB")^-1 = [(2,-3),(0,1)]`

By R2 - 7R1, we get,

`[(1,0),(0,2)] ("AB")^-1 = [(2,-3),(-14,22)]`

By `(1/2)"R"_2,` we get,

`[(1,0),(0,1)] ("AB")^-1 = [(2,-3),(-7,11)]`

∴ (AB)-1 = `[(2,-3),(-7,11)]`     ....(1)

|A| = `|(2,3),(1,2)| = 4 - 3 = 1 ne 0`

∴ A-1 exists.

Consider, AA-1 = I

∴ `[(2,3),(1,2)] "A"^-1 = [(1,0),(0,1)]`

By R1 ↔ R2, we get,

`[(1,2),(2,3)] "A"^-1 = [(0,1),(1,0)]`

By `"R"_2 - 2"R"_1,`we get,

`[(1,2),(0,-1)] "A"^-1 = [(0,1),(1,-2)]`

By `(-1)"R"_2`, we get,

`[(1,2),(0,1)] "A"^-1 = [(0,1),(-1,2)]`

By `"R"_1 - 2"R"_2`, we get,

`[(1,0),(0,1)] "A"^-1 = [(2,-3),(-1,2)]`

∴ A-1 = `[(2,-3),(-1,2)]`

|B| = `|(1,0),(3,1)| = 1 - 0 = 1 ne 0`

∴ B-1 exists.

Consider, BB-1 = I 

∴ `[(1,0),(3,1)] "B"^-1 = [(1,0),(0,1)]`

By `"R"_2 - 3"R"_1`, we get,

`[(1,0),(0,1)] "A"^-1 = [(1,0),(-3,1)]`

∴ `"B"^-1 = [(1,0),(-3,1)]`

∴ `"B"^-1."A"^-1 = [(1,0),(-3,1)],[(2,-3),(-1,2)]` 

`= [(2 - 0, -3+0),(-6-1,9+2)]`

`= [(2,-3),(-7,11)]`      ....(2)

From (1) and (2), `("AB")^-1 = "B"^-1."A"^-1.`

shaalaa.com
Elementry Transformations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrics - Miscellaneous exercise 2 (A) [पृष्ठ ५३]

APPEARS IN

संबंधित प्रश्‍न

Apply the given elementary transformation of the following matrix.

A = `[(1,0),(-1,3)]`, R1↔ R2


Apply the given elementary transformation of the following matrix.

A = `[(5,4),(1,3)]`, C1↔ C2; B = `[(3,1),(4,5)]` R1↔ R2.
What do you observe?


Apply the given elementary transformation of the following matrix.

A = `[(1,-1,3),(2,1,0),(3,3,1)]`, 3R3 and then C3 + 2C2

and A = `[(1,-1,3),(2,1,0),(3,3,1)]`, C3 + 2C2 and then 3R3
What do you conclude?


Apply the given elementary transformation of the following matrix.

Use suitable transformation on `[(1,2),(3,4)]` to convert it into an upper triangular matrix.


Apply the given elementary transformation of the following matrix.

Transform `[(1,-1,2),(2,1,3),(3,2,4)]` into an upper triangular matrix by suitable column transformations.


If A = `((1,0,0),(2,1,0),(3,3,1))`, then reduce it to I3 by using column transformations.


Check whether the following matrix is invertible or not:

`[(1,0),(0,1)]`


Check whether the following matrix is invertible or not:

`((1,1),(1,1))`


Check whether the following matrix is invertible or not:

`((1,2),(3,3))`


Check whether the following matrix is invertible or not:

`((2,3),(10,15))`


Check whether the following matrix is invertible or not:

`[(cos theta, sin theta),(-sin theta, cos theta)]`


Check whether the following matrix is invertible or not:

`(("sec" theta , "tan" theta),("tan" theta,"sec" theta))`


Check whether the following matrix is invertible or not:

`((3,4,3),(1,1,0),(1,4,5))`


Check whether the following matrix is invertible or not:

`((1,2,3),(2,-1,3),(1,2,3))`


If A = `[(1,2),(3,4)]` and X is a 2 × 2 matrix such that AX = I, find X.


Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary row transformations.


Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.


Find X, if AX = B, where A = `[(1,2,3),(-1,1,2),(1,2,4)]` and B = `[(1),(2),(3)]`


Find A-1 by the adjoint method and by elementary transformations, if A = `[(1,2,3),(-1,1,2),(1,2,4)]`


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by using elementary row transformations.


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0` 


Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3)  "is"   "a"_11"A"_11 + "a"_12"A"_12 + "a"_13"A"_13 = |"A"|` 


If A = `[(1,0,1),(0,2,3),(1,2,1)]` and B = `[(1,2,3),(1,1,5),(2,4,7)]`, then find a matrix X such that XA = B.


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]` , adj A = `[(4,"a"),(-3,"b")]`, then the values of a and b are


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(2,1)]` and A(adj A) = k I, then the value of k is


If A = `[(2, -1, 1),(-2, 3, -2),(-4, 4, -3)]` the find A2 


If A = `[(-2, 4),(-1, 2)]` then find A2 


Find the matrix X such that AX = I where A = `[(6, 17),(1, 3)]`


Find A−1 using column transformations:

A = `[(5, 3),(3, -2)]`


Find A−1 using column transformations:

A = `[(2, -3),(-1, 2)]`


If A = `[(1, 2, -1),(3, -2, 5)]`, apply R1 ↔ R2 and then C1 → C1 + 2C3 on A


Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`


If A = `[(3, -1),(4, 2)]`, B = `[(2),(-1)]`, find X such that AX = B.


Find the matrix X such that AX = B, where A = `[(2, 1),(-1, 3)]`, B = `[(12, -1),(1, 4)]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×