Advertisements
Advertisements
प्रश्न
If A = `[(2,1,3),(1,0,1),(1,1,1)]`, then reduce it to I3 by using row transformations.
उत्तर
|A| = `|(2,1,3),(1,0,1),(1,1,1)|`
= 2(0 - 1)- 1(1 - 1) + 3(1 - 0)
= - 2 - 0 + 3
= 1 ≠ 0
∴ A is a non-singular matrix.
Hence, the required transformation is possible.
Now, A = `[(2,1,3),(1,0,1),(1,1,1)]`
By R1 - R2, we get,
A ∼ `[(1,1,2),(1,0,1),(1,1,1)]`
By R2 - R1 and R3 - R1, we get,
A ∼ `[(1,1,2),(0,-1,-1),(0,0,-1)]`
By (- 1)R2 and (- 1)R3, we get,
A ∼ `[(1,1,2),(0,1,1),(0,0,1)]`
By R1 - R2, we get,
A ∼ `[(1,0,1),(0,1,1),(0,0,1)]`
By R1 - R3, and R2 - R3, we get,
A ∼ `[(1,0,0),(0,1,0),(0,0,1)]` = I3
APPEARS IN
संबंधित प्रश्न
Apply the given elementary transformation of the following matrix.
B = `[(1, -1, 3),(2, 5, 4)]`, R1→ R1 – R2
Apply the given elementary transformation of the following matrix.
A = `[(5,4),(1,3)]`, C1↔ C2; B = `[(3,1),(4,5)]` R1↔ R2.
What do you observe?
Apply the given elementary transformation of the following matrix.
A = `[(1,2,-1),(0,1,3)]`, 2C2
B = `[(1,0,2),(2,4,5)]`, −3R1
Find the addition of the two new matrices.
Apply the given elementary transformation of the following matrix.
Convert `[(1,-1),(2,3)]` into an identity matrix by suitable row transformations.
Apply the given elementary transformation of the following matrix.
Transform `[(1,-1,2),(2,1,3),(3,2,4)]` into an upper triangular matrix by suitable column transformations.
Check whether the following matrix is invertible or not:
`[(1,0),(0,1)]`
Check whether the following matrix is invertible or not:
`((1,2),(3,3))`
Check whether the following matrix is invertible or not:
`((2,3),(10,15))`
Check whether the following matrix is invertible or not:
`(("sec" theta , "tan" theta),("tan" theta,"sec" theta))`
Check whether the following matrix is invertible or not:
`((3,4,3),(1,1,0),(1,4,5))`
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary row transformations.
Find the inverse of A = `[("cos" theta, -"sin" theta, 0),("sin" theta, "cos" theta, 0),(0,0,1)]` by elementary column transformations.
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, find AB and (AB)-1 . Verify that (AB)-1 = B-1.A-1.
Find X, if AX = B, where A = `[(1,2,3),(-1,1,2),(1,2,4)]` and B = `[(1),(2),(3)]`
Find A-1 by the adjoint method and by elementary transformations, if A = `[(1,2,3),(-1,1,2),(1,2,4)]`
Find the inverse of A = `[(1,0,1),(0,2,3),(1,2,1)]` by using elementary column transformations.
Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by using elementary row transformations.
Show with the usual notation that for any matrix A = `["a"_"ij"]_(3xx3) "is" "a"_11"A"_21 + "a"_12"A"_22 + "a"_13"A"_23 = 0`
The element of second row and third column in the inverse of `[(1, 2, 1),(2, 1, 0),(-1, 0, 1)]` is ______.
If A = `[(-2, 4),(-1, 2)]` then find A2
Find the matrix X such that AX = I where A = `[(6, 17),(1, 3)]`
If A = `[(1, 2, -1),(3, -2, 5)]`, apply R1 ↔ R2 and then C1 → C1 + 2C3 on A
Find the matrix X such that `[(1, 2, 3),(2, 3, 2),(1, 2, 2)]` X = `[(2, 2, -5),(-2, -1, 4),(1, 0, -1)]`
Find the inverse of A = `[(2, -3, 3),(2, 2, 3),(3, -2, 2)]` by using elementary row transformations.
If A = `[(2, 3),(1, 2)]`, B = `[(1, 0),(3, 1)]`, find AB and (AB)−1
If A = `[(cosθ, -sinθ, 0),(sinθ, cosθ, 0),(0, 0, 1)]`, find A–1