मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If A = [101023121]and B=[123115247], then find a matrix X such that XA = B. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.

बेरीज

उत्तर १

A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` and B = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`

XA = B

Post multiplying by A–1, we get

XAA–1 = BA–1

∴ X = BA–1         ...(i)

|A| = `|(1, 0, 1),(0, 2, 3),(1, 2, 1)|`

= 1(2 – 6) – 0 + 1(0 – 2)

= – 4 – 2

= – 6 ≠ 0

∴ A–1 exists.

A11 = (– 1)1+1 M11 = `1 |(2, 3),(2, 1)|` = 1(2 – 6) = – 4

A12 = (– 1)1+2 M12 = `-1 |(0, 3),(1, 1)|` = –1(0 – 3) = 3

A13 = (– 1)1+3 M13 = `1 |(0, 2),(1, 2)|` = 1(0 – 2) = – 2

A21 = (– 1)2+1 M21 = `-1 |(0, 1),(2, 1)|` = –1(0 – 2) = 2

A22 = (– 1)2+2 M22 = `1 |(1, 1),(1, 1)|` = 1(1 – 1) = 0

A23 = (– 1)2+3 M23 = `-1 |(1, 0),(1, 2)|` = –1(2 – 0) = – 2

A31 = (– 1)3+1 M31 = `1 |(0, 1),(2, 3)|` = 1(0 – 2) = – 2

A32 = (– 1)3+2 M32 = `-1 |(1, 1),(0, 3)|` = –1(3 – 0) = – 3

A33 = (– 1)3+3 M33 = `1 |(1, 0),(0, 2)|` = 1(2 – 0) =  2

∴ The matrix of the co-factors is

[Aij]3×3 = `[("A"_11, "A"_12, "A"_13),("A"_21, "A"_22, "A"_23),("A"_31, "A"_32, "A"_33)]`

= `[(-4, 3, -2),(2, 0, -2),(-2, -3, 2)]`

Now, adj A = `["A"_"ij"]_(3 xx 3)^"T"`

= `[(-4, 2, -2),(3, 0, -3),(-2, -2, 2)]`

∴ A–1 = `1/|"A"| ("adj A")`

= `-1/6[(-4, 2, -2),(3, 0, -3),(-2, -2, 2)]`

X = BA–1             ...[From (i)]

∴ X = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)] {(1/6) [(-4, 2, -2),(3, 0, -3),(-2, -2, 2)]}`

= `(1)/(6) [(1, 2, 3),(1, 1, 5),(2, 4, 7)] [(4, -2, 2),(-3, 0, 3),(2, 2, -2)]`

= `(1)/(6) [(4 - 6 + 6, -2 + 0 + 6, 2 + 6 - 6),(4 - 3 + 10, -2 + 0 + 10, 2 + 3 - 10),(8 - 12 + 14, -4 + 0 + 14, 4 + 12 - 14)]`

∴ X = `(1)/(6)[(4, 4, 2),(11, 8, -5),(10, 10, 2)]`

shaalaa.com

उत्तर २

Consider XA = B

∴ `X[(1, 0, 1),(0, 2, 3),(1, 2, 1)] = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`

By C3 – C1, we get

`[(1, 0, 0),(0, 2, 3),(1, 2, 0)] = [(1, 2, 2),(1, 1, 4),(2, 4, 5)]`

By `(1/2)C_2`, we get

`[(1, 0, 0),(0, 1, 3),(1, 1, 0)] = [(1, 1, 2),(1, 1/2, 4),(2, 2, 5)]`

By C3 – 3C2, we get

`[(1, 0, 0),(0, 1, 0),(1, 1, -3)] = [(1, 1, -1),(1, 1/2, 5/2),(2, 2, -1)]`

By `(-1/3)C_3`, we get

`[(1, 0, 0),(0, 1, 0),(1, 1, 1)] = [(1, 1, 1/3),(1, 1/2, -5/6),(2, 2, 1/3)]`

By C1 – C3 and C2 – C3, we get

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)] = [(2/3, 2/3, 1/3),(11/6, 4/3, -5/6),(5/3, 5/3, 1/3)]`

∴ X = `1/6[(4, 4, 2),(11, 8, -5),(10, 10, 2)]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrices - Exercise 2.5 [पृष्ठ ७२]

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`


Find the inverse of the matrix `[(1      2     3),(1    1     5),(2    4     7)]` by adjoint method


Find the inverse of the following matrix by elementary row transformations if it exists.
`A = [(1, 2, -2), (0, -2, 1), (-1, 3, 0)]`


If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.


Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.


Find the matrix of the co-factor for the following matrix.

`[(1,3),(4,-1)]`


Find the matrix of the co-factor for the following matrix.

`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`


Find the adjoint of the following matrix.

`[(2,-3),(3,5)]`


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I


Find the inverse of the following matrix by the adjoint method.

`[(2,-2),(4,3)]`


Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Find AB, if A = `((1,2,3),(1,-2,-3))` and B = `((1,-1),(1,2),(1,-2))`. Examine whether AB has inverse or not.


Find the inverse of the following matrix (if they exist):

`((1,3),(2,7))`


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is


Choose the correct answer from the given alternatives in the following question:

If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = _______


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____


Choose the correct answer from the given alternatives in the following question:

The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is


Find the inverse of the following matrices by the adjoint method `[(3, -1),(2, -1)]`.


Find the inverse of the following matrices by transformation method:

`[(2, 0, −1),(5, 1, 0),(0, 1, 3)]`


Find the inverse of  A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.


Adjoint of `[(2, -3),(4, -6)]` is _______


Fill in the blank :

If A = `[(3, -5),(2, 5)]`, then co-factor of a12 is _______


Fill in the blank :

If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).


Fill in the blank :

If A = `[(2, 1),(1, 1)] "and" "A"^-1 = [(1, 1),(x, 2)]`, then x = _______


Check whether the following matrices are invertible or not:

`[(1, 0),(0, 1)]`


Check whether the following matrices are invertible or not:

`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`


Check whether the following matrices are invertible or not:

`[(1, 2, 3),(2, 4, 5),(2, 4, 6)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


A = `[(cos alpha, - sin alpha,  0),(sin alpha, cos alpha,  0),(0, 0, 1)]`, then A−1 is


If A = `[(0, 0, -1),(0, -1, 0),(-1, 0, 0)]`, then the only correct statement about the matrix A is ______


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______


If A = `[(0, 3, 3),(-3, 0, -4),(-3, 4, 0)]` and B = `[(x),(y),(z)]`, find the matrix B'(AB)


If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'


Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`


If A = `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`, find adj (A).


Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`


If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method


The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______


Complete the following activity to verify A. adj (A) = det (A) I.

Given A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` then

|A| = 2(____) – 0(____) + ( ) (____)

= 6 – 0 – 5

= ______ ≠ 0

Cofactors of all elements of matrix A are

A11 = `(-1)^2 |("( )", "( )"),("( )", "( )")|` = (______),

A12 = `(-1)^3 |(5, "( )"),("( )", 3)|` = – 15,

A13 = `(-1)^4 |(5, "( )"),("( )", 1)|` = 5,

A21 = _______, A22 = _______, A23 = _______,

A31 = `(-1)^4 |("( )", "( )"),("( )", "( )")|` = (______),

A32 = `(-1)^5 |(2, "( )"),("( )", 0)|` = (  ),

A33 = `(-1)^6 |(2, "( )"),("( )", 1)|` = 2,.

Cofactors of matrix A = `[(3, "____", "____"),("____", "____",-2),(1, "____", "____")]`

adj (A) = `[("____", "____", "____"),("____", "____","____"),("____","____","____")]`

A.adj (A) = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)] [("( )", -1, 1), (-15, "( )", -5),("( )", -2, "( )")] = [(1, 0, "( )"),("( )", "( )", "( )"),(0, "( )", "( )")]` = |A|I


Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

C1 → C1 + C3

`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`

C3 → C3 + C1 

`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`

C1 → C1 – 5C2, C3 → C3 – 5C2

`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`

C1 → C1 – 2C3, C2 → C2 – C

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`

B−1 =  `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`

`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`


Find the adjoint of the matrix A = `[(2,3),(1,4)]`


Find the inverse of the following matrix:

`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`


If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.


Solve by matrix inversion method:

x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4


If A is 3 × 3 matrix and |A| = 4 then |A-1| is equal to:


If A = `[(1,-1),(2,3)]` show that A2 - 4A + 5I2 = 0 and also find A-1.


The cost of 2 Kg of Wheat and 1 Kg of Sugar is ₹ 70. The cost of 1 Kg of Wheat and 1 Kg of Rice is ₹ 70. The cost of 3 Kg of Wheat, 2 Kg of Sugar and 1 Kg of rice is ₹ 170. Find the cost of per kg each item using the matrix inversion method.


The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?


If A = `[(0, -1, 0), (1, 0, 0), (0, 0, -1)]`, then A-1 is ______ 


If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______


If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.


If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.


If a 3 × 3 matrix A has its inverse equal to A, then A2 = ______ 


If A2 - A + I = 0, then A-1 = ______.


If A = `[(2, 2),(4, 5)]` and A–1 = λ(adj(A)), then λ = ______ .


The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.


The inverse of the matrix A = `[(3, 0, 0),(0, 4, 0),(0, 0, 5)]` is ______.


Find the cofactors of the elements of the matrix

`[(-1, 2),(-3, 4)]`


A–1 exists if |A| = 0.


The number of solutions of equation x2 – x3 = 1, – x1 + 2x3 = 2, x1 – 2x2 = 3 is ______.


Matrix A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]` then the value of a31 A31 + a32 A32 + a33 A33 is ______.


If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.


If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.


If A = `[(cos α, sin α),(-sin α, cos α)]`, then find α satisfying `0 < α < π/2`, when A + AT = `sqrt(2)  l_2` where AT is transpose of A.


If A and B are two square matrices such that A2B = BA and (AB)10 = AkB10. Then, k is ______.


For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.


If A = `[(1, 2),(3, 4)]` verify that A (adj A) = (adj A) A = |A| I


If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`

Find (AB)–1 by adjoint method.

Solution:

AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`

AB = [  ]

|AB| =  `square`

M11 = –2  ∴ A11 = (–1)1+1 . (–2) = –2

M12 = –3     A12 = (–1)1+2 . (–3) = 3

M21 = 4       A21 = (–1)2+1 . (4) = –4

M22 = 3       A22 = (–1)2+2 . (3) = 3

Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`

adj (A) = [  ]

A–1 = `1/|A| . adj(A)`

A–1 = `square`


if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.


If A = `[(2, 3),(4, 5)]`, show that A2 – 7A – 2I = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×