Advertisements
Advertisements
प्रश्न
Choose the correct answer from the given alternatives in the following question:
If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = _______
पर्याय
0
± 1
2
2
उत्तर
If A = `[(lambda,1),(-1, -lambda)]`, and A-1 does not exist if λ = ± 1
APPEARS IN
संबंधित प्रश्न
Find the inverse of matrix A by using adjoint method; where A = `[(1, 0, 1), (0, 2, 3), (1, 2, 1)]`
Find the co-factor of the element of the following matrix:
`[(-1, 2),(-3, 4)]`
Find the co-factor of the element of the following matrix.
`[(1,-1,2),(-2,3,5),(-2,0,-1)]`
Find the matrix of the co-factor for the following matrix.
`[(1,3),(4,-1)]`
Find the inverse of the following matrix.
`[(0,1,2),(1,2,3),(3,1,1)]`
Find AB, if A = `((1,2,3),(1,-2,-3))` and B = `((1,-1),(1,2),(1,-2))`. Examine whether AB has inverse or not.
Find the inverse of the following matrix (if they exist):
`[(2,1),(7,4)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[("cos"alpha, - "sin"alpha,0),("sin"alpha,"cos"alpha,0),(0,0,1)]` where α ∈ R, then [F(α)]-1 is
Find the inverse of the following matrices by the adjoint method `[(3, -1),(2, -1)]`.
Find the inverse of the following matrices by transformation method:
`[(2, 0, −1),(5, 1, 0),(0, 1, 3)]`
Find matrix X, if AX = B, where A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "and B" = [(1),(2),(3)]`.
Adjoint of `[(2, -3),(4, -6)]` is _______
Choose the correct alternative.
If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______
Choose the correct alternative.
If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______
State whether the following is True or False :
A = `[(2, 1),(10, 5)]` is invertible matrix.
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.
Check whether the following matrices are invertible or not:
`[(1, 2, 3),(2, 4, 5),(2, 4, 6)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(1, -1),(2, 3)]`
Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.
If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______
If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.
If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`
If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1
Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`
Complete the following activity to verify A. adj (A) = det (A) I.
Given A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` then
|A| = 2(____) – 0(____) + ( ) (____)
= 6 – 0 – 5
= ______ ≠ 0
Cofactors of all elements of matrix A are
A11 = `(-1)^2 |("( )", "( )"),("( )", "( )")|` = (______),
A12 = `(-1)^3 |(5, "( )"),("( )", 3)|` = – 15,
A13 = `(-1)^4 |(5, "( )"),("( )", 1)|` = 5,
A21 = _______, A22 = _______, A23 = _______,
A31 = `(-1)^4 |("( )", "( )"),("( )", "( )")|` = (______),
A32 = `(-1)^5 |(2, "( )"),("( )", 0)|` = ( ),
A33 = `(-1)^6 |(2, "( )"),("( )", 1)|` = 2,.
Cofactors of matrix A = `[(3, "____", "____"),("____", "____",-2),(1, "____", "____")]`
adj (A) = `[("____", "____", "____"),("____", "____","____"),("____","____","____")]`
A.adj (A) = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)] [("( )", -1, 1), (-15, "( )", -5),("( )", -2, "( )")] = [(1, 0, "( )"),("( )", "( )", "( )"),(0, "( )", "( )")]` = |A|I
Find the inverse of the following matrix:
`[(1,2,3),(0,2,4),(0,0,5)]`
If A is an invertible matrix of order 2 then det (A-1) be equal
If A = `[(1,-1),(2,3)]` show that A2 - 4A + 5I2 = 0 and also find A-1.
The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.
If A is non-singular matrix such that (A - 2l)(A - 4l) = 0 then A + 8A-1 = ______.
If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______
If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______
If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______
If A = `[(1, tanx),(-tanx, 1)]`, then AT A–1 = ______.
Choose the correct option:
If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`
If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.
If A = `[(2, 3),(4, 5)]`, show that A2 – 7A – 2I = 0