Advertisements
Advertisements
प्रश्न
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(1, -1),(2, 3)]`
उत्तर
Let A = `[(1, -1),(2, 3)]`
∴ |A| = `|(1, -1),(2, 3)|`
= 3 + 2
= 5 ≠ 0
∴ A–1 exists.
Consider AA–1 = I
∴ `[(1, -1),(2, 3)] "A"^-1 = [(1, 0),(0, 1)]`
Applying R2 → R2 – 2R1, we get
`[(1, -1),(0, 5)] "A"^-1 = [(1, 0),(-2, 1)]`
Applying R2 → `(1/5)` R2, we get
`[(1, -1),(0, 1)] "A"^-1 = [(1, 0),(-2/5, 1/5)]`
Applying R1 → R1 – R2, we get
`[(1, 0),(0, 1)] "A"^-1 = [(3/5, 1/5),(-2/5, 1/5)]`
∴ A–1 = `[(3/5, 1/5),(-2/5, 1/5)]`.
APPEARS IN
संबंधित प्रश्न
The sum of three numbers is 6. If we multiply the third number by 3 and add it to the second number we get 11. By adding first and third numbers we get a number, which is double than the second number. Use this information and find a system of linear equations. Find these three numbers using matrices.
Find the inverse of the matrix `[(1 2 3),(1 1 5),(2 4 7)]` by adjoint method
Find the co-factor of the element of the following matrix:
`[(-1, 2),(-3, 4)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____
Choose the correct answer from the given alternatives in the following question:
The inverse of a symmetric matrix is
Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.
Adjoint of `[(2, -3),(4, -6)]` is _______
Choose the correct alternative.
If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______
Fill in the blank :
If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`
State whether the following is True or False :
If A and B are conformable for the product AB, then (AB)T = ATBT.
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`
The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =
If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is
`cos theta [(cos theta, sin theta),(-sin theta, cos theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______
If A = `[(0, 0, -1),(0, -1, 0),(-1, 0, 0)]`, then the only correct statement about the matrix A is ______
If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______
If A(α) = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]` then prove that A2(α) = A(2α)
A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)
If A = `[(6, 5),(5, 6)]` and B = `[(11, 0),(0, 11)]` then find A'B'
If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1
Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`
Find the inverse of the following matrix:
`[(1,-1),(2,3)]`
If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.
The prices of three commodities A, B, and C are ₹ x, y, and z per unit respectively. P purchases 4 units of C and sells 3 units of A and 5 units of B. Q purchases 3 units of B and sells 2 units of A and 1 unit of C. R purchases 1 unit of A and sells 4 units of B and 6 units of C. In the process P, Q and R earn ₹ 6,000, ₹ 5,000 and ₹ 13,000 respectively. By using the matrix inversion method, find the prices per unit of A, B, and C.
The inverse matrix of `((3,1),(5,2))` is
If A is an invertible matrix of order 2 then det (A-1) be equal
Solve by using matrix inversion method:
x - y + z = 2, 2x - y = 0, 2y - z = 1
If `A = [[-3,1],[-4,3]]` and A-1 = αA, then α = ______.
If the inverse of the matrix A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]` is `1/9 [(7, 4, -1), (5, -1, -2), (3, 3, a)]`, then a is equal to ______
If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.
If A, B are two square matries, such that AB = B, BA = A and n ∈ N then (A + B)n =
If matrix A = `[(3, -2, 4),(1, 2, -1),(0, 1, 1)]` and A–1 = `1/k` (adj A), then k is ______.
If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.
For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.