Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______
पर्याय
`[(0, 1, 1),(0, 1, 0),(1, 0, 1)]`
`[(1, 1, 1),(1, 1, 1),(1, 0, 1)]`
`[(1, 0, 1),(0, 1, 0),(0, 0, 0)]`
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
उत्तर
B–1 = B
∴ B–1B = B.B
∴ B2 = I = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`.
APPEARS IN
संबंधित प्रश्न
Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.
Find the co-factor of the element of the following matrix:
`[(-1, 2),(-3, 4)]`
Find the adjoint of the following matrix.
`[(2,-3),(3,5)]`
Find the inverses of the following matrices by the adjoint method:
`[(1,2,3),(0,2,4),(0,0,5)]`
Find AB, if A = `((1,2,3),(1,-2,-3))` and B = `((1,-1),(1,2),(1,-2))`. Examine whether AB has inverse or not.
Choose the correct answer from the given alternatives in the following question:
If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is
Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.
Choose the correct alternative.
If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______
Fill in the blank :
If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`
If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______
If A = `[(1, -1, 1),(2, 1, -3),(1, 1, 1)]`, 10B = `[(4, 2,2),(-5, 0, ∞),(1, -2, 3)]` and B is the inverse of matrix A, then α = ______
If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.
If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`
Choose the correct alternative:
If A is a non singular matrix of order 3, then |adj (A)| = ______
Find the inverse of matrix B = `[(3,1, 5),(2, 7, 8),(1, 2, 5)]` by using adjoint method
Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
C1 → C1 + C3
`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`
C3 → C3 + C1
`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`
C1 → C1 – 5C2, C3 → C3 – 5C2
`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`
C1 → C1 – 2C3, C2 → C2 – C3
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`
B−1 = `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`
`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Find the inverse of the following matrix:
`[(3,1),(-1,3)]`
If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]` then, find A.
If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1
Solve by matrix inversion method:
2x – z = 0; 5x + y = 4; y + 3z = 5
Which of the following matrix has no inverse
If A = `[(1,-1),(2,3)]` show that A2 - 4A + 5I2 = 0 and also find A-1.
The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.
If A is non-singular matrix such that (A - 2l)(A - 4l) = 0 then A + 8A-1 = ______.
If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.
If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.
If A = `[(5, -4), (7, -5)]`, then 3A-1 = ______
If A = `[(2, 2),(4, 5)]` and A–1 = λ(adj(A)), then λ = ______ .
If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.
If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.
Find the inverse of the matrix A by using adjoint method.
where A = `[(-3, -1, 1),(0, 0, 1),(-15, 6, -6)]`
If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`
If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.
If A = `[(1, 2, 4),(4, 3, -2),(1, 0, -3)]`. Show that A–1 exists and find A–1 using column transformation.