मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find AB, if A = (1231-2-3) and B = (1-1121-2). Examine whether AB has inverse or not. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find AB, if A = `((1,2,3),(1,-2,-3))` and B = `((1,-1),(1,2),(1,-2))`. Examine whether AB has inverse or not.

बेरीज

उत्तर

AB = `((1,2,3),(1,-2,-3)) xx ((1,-1),(1,2),(1,-2))`

`= [(1(1) + 2(1) + 3(1),1(-1)+2(2)+3(-2)),(1(1)+(-2)(1)+(-3)(1),1(-1)+(-2)(2)+(-3)(-2))]`

`= [(1+2+3,  -1+4-6),(1-2-3 , -1-4+6)]`

`= [(6,-3),(-4,1)]`

∴ |AB| = `|(6,-3),(-4,1)| = 6 - 12 = - 6 ≠ 0`

∴ AB is a non-singular matrix.

Hence, (AB)-1 exists.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrics - Miscellaneous exercise 2 (A) [पृष्ठ ५२]

APPEARS IN

संबंधित प्रश्‍न

 Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`


Find the inverse of the following matrix by the adjoint method.

`[(-1,5),(-3,2)]`


Find the inverses of the following matrices by the adjoint method:

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the following matrix (if they exist):

`((2,1),(1,-1))`


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.


Choose the correct answer from the given alternatives in the following question:

The inverse of A = `[(0,1,0),(1,0,0),(0,0,1)]` is


Find matrix X, if AX = B, where A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "and B" = [(1),(2),(3)]`.


Choose the correct alternative.

If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______


Choose the correct alternative.

If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______


Choose the correct alternative.

If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______


State whether the following is True or False :

A = `[(2, 1),(10, 5)]` is invertible matrix.


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, 1),(7, 4)]`


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______


If A = `[(4, 5),(2, 5)]`, then |(2A)−1| = ______


If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1 


If A = `[(0, 1),(2, 3),(1, -1)]` and B = `[(1, 2, 1),(2, 1, 0)]`, then find (AB)−1 


If A = `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`, find adj (A).


Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`


Find the inverse of the following matrix:

`[(1,2,3),(0,2,4),(0,0,5)]`


Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.


If A = `[(3,7),(2,5)]` and B = `[(6,8),(7,9)]`, then verify that (AB)-1 = B-1A-1


Solve by matrix inversion method:

2x – z = 0; 5x + y = 4; y + 3z = 5


The sum of three numbers is 20. If we multiply the first by 2 and add the second number and subtract the third we get 23. If we multiply the first by 3 and add second and third to it, we get 46. By using the matrix inversion method find the numbers.


The inverse matrix of `((3,1),(5,2))` is


If A = `((-1,2),(1,-4))` then A(adj A) is


If A = `|(1,1,1),(3,4,7),(1,-1,1)|` verify that A(adj A) = (adj A)(A) = |A|I3.


The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.


If A = `[(x,1),(1,0)]` and A = A , then x = ______.


If A2 - A + I = 0, then A-1 = ______.


If A = `[(1, tanx),(-tanx, 1)]`, then AT A–1 = ______.


If `A = [[-3,1],[-4,3]]` and A-1 = αA, then α = ______.


Find the cofactors of the elements of the matrix

`[(-1, 2),(-3, 4)]`


If A = `[(1, 2, -1),(-1, 1, 2),(2, -1, 1)]`, then det (adj (adj A)) is ______.


If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.


If the inverse of the matrix `[(α, 14, -1),(2, 3, 1),(6, 2, 3)]` does not exist, then the value of α is ______.


If A and B are two square matrices such that A2B = BA and (AB)10 = AkB10. Then, k is ______.


If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.


Find the inverse of the matrix `[(1, 1, 1),(1, 2, 3),(3, 2, 2)]` by elementary column transformation.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×