Advertisements
Advertisements
प्रश्न
Solve by matrix inversion method:
2x – z = 0; 5x + y = 4; y + 3z = 5
उत्तर
The given system can be written as
`[(2,0,-1),(5,1,0),(0,1,3)][(x),(y),(z)] = [(0),(4),(5)]`
AX = B
Where A = `[(2,0,-1),(5,1,0),(0,1,3)]`, X = `[(x),(y),(z)]` and B = `[(0),(4),(5)]`
|A| = `|(2,0,-1),(5,1,0),(0,1,3)|`
= 2(3 – 0) – 0(15 – 0) – 1(5 – 0)
= 2(3) – 0(15) – 1(5)
= 6 – 0 – 5
= 1
[Aij] = `[(3,-15,5),(-|(0,-1),(1,3)|,|(2,-1),(0,3)|,-|(2,0),(0,1)|),(|(0,-1),(1,0)|,-|(2,-1),(5,0)|,|(2,0),(5,1)|)]`
`= [(3,-15,5),(-1,6,-2),(1,-5,2)]`
adj A = `["A"_"ij"]^"T" = [(3,-1,1),(-15,6,-5),(5,-2,2)]`
`"A"^-1 = 1/|"A"|`(adj A)
`= 1/1[(3,-1,1),(-15,6,-5),(5,-2,2)] => [(3,-1,1),(-15,6,-5),(5,-2,2)]`
X = A-1B
`[(x),(y),(z)] = [(3,-1,1),(-15,6,-5),(5,-2,2)][(0),(4),(5)] => [(0-4+5),(0+24-25),(0-8+10)]`
`[(x),(y),(z)] = [(1),(-1),(2)]`
∴ x = 1, y = -1, z = 2.
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix (if they exist):
`[(2,-3),(5,7)]`
Find the inverse of the following matrix (if they exist):
`[(2,-3,3),(2,2,3),(3,-2,2)]`
State whether the following is True or False :
If A and B are conformable for the product AB, then (AB)T = ATBT.
State whether the following is True or False :
A(adj. A) = |A| I, where I is the unit matrix.
A = `[(cos alpha, - sin alpha, 0),(sin alpha, cos alpha, 0),(0, 0, 1)]`, then A−1 is
If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method
Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
C1 → C1 + C3
`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`
C3 → C3 + C1
`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`
C1 → C1 – 5C2, C3 → C3 – 5C2
`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`
C1 → C1 – 2C3, C2 → C2 – C3
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`
B−1 = `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`
`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
If `A = [[-3,1],[-4,3]]` and A-1 = αA, then α = ______.
Find the inverse of the matrix A by using adjoint method.
where A = `[(-3, -1, 1),(0, 0, 1),(-15, 6, -6)]`
If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.